24,838 research outputs found
From Value Protection to Value Creation: Rethinking Corporate Governance Standards for Firm Innovation
A company’s pro-innovation needs are often met by the exploitation of its resources, widely defined. The resource-based theory of the firm provides immense empirical insights into how a firm’s corporate governance factors can contribute to promoting innovation. However, these implications may conflict with the prevailing standards of corporate governance imposed on many securities markets for listed companies, which have developed based on theoretical models supporting a shareholder-centered and agency-based theory of the firm. Although prevailing corporate governance standards can to an extent support firm innovation, tensions are created in some circumstances where companies pit their corporate governance compliance against resource-based needs that promote innovation. In the present context of steady internationalization and convergence in corporate governance standards in global securities markets towards a shareholder-centered agency-based model, we argue that there is a need to provide some room for accommodating the resource-based needs for companies in relation to promoting innovation. We explore a number of options and suggest that the most practicable option would be the development of recognized exceptions that deviate from prevailing corporate governance standards. We further suggest as to how an exceptions-based regime can be implemented in the U.K. and U.S., comparing the rules-based regime in the U.S. with the principles-based regime in the U.K
An Alternative Parameterization of R-matrix Theory
An alternative parameterization of R-matrix theory is presented which is
mathematically equivalent to the standard approach, but possesses features
which simplify the fitting of experimental data. In particular there are no
level shifts and no boundary-condition constants which allows the positions and
partial widths of an arbitrary number levels to be easily fixed in an analysis.
These alternative parameters can be converted to standard R-matrix parameters
by a straightforward matrix diagonalization procedure. In addition it is
possible to express the collision matrix directly in terms of the alternative
parameters.Comment: 8 pages; accepted for publication in Phys. Rev. C; expanded Sec. IV,
added Sec. VI, added Appendix, corrected typo
Testing collapse models with levitated nanoparticles: the detection challenge
We consider a nanoparticle levitated in a Paul trap in ultrahigh cryogenic
vacuum, and look for the conditions which allow for a stringent
noninterferometric test of spontaneous collapse models. In particular we
compare different possible techniques to detect the particle motion. Key
conditions which need to be achieved are extremely low residual pressure and
the ability to detect the particle at ultralow power. We compare three
different detection approaches based respectively on a optical cavity, optical
tweezer and a electrical readout, and for each one we assess advantages,
drawbacks and technical challenges
Application of energy and angular momentum balance to gravitational radiation reaction for binary systems with spin-orbit coupling
We study gravitational radiation reaction in the equations of motion for
binary systems with spin-orbit coupling, at order (v/c)^7 beyond Newtonian
gravity, or O(v/c)^2 beyond the leading radiation reaction effects for
non-spinning bodies. We use expressions for the energy and angular momentum
flux at infinity that include spin-orbit corrections, together with an
assumption of energy and angular momentum balance, to derive equations of
motion that are valid for general orbits and for a class of coordinate gauges.
We show that the equations of motion are compatible with those derived earlier
by a direct calculation.Comment: 12 pages, submitted to General Relativity and Gravitatio
Mutual Event Observations of Io's Sodium Corona
We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere
Investment Management, Stewardship and Corporate Governance Roles
The policy preference for funds and asset managers to engage in corporate governance roles is owing to policymakers’ need to galvanize ‘self-regulatory’ credibility in the corporate sector after corporate scandals. UK policymakers have since the 1990s looked to the private sector to develop self-healing techniques to address one corporate scandal or collapse after another. This is to minimize the need for regulatory intrusion and to galvanise proximate and resourceful actors such as shareholders. Relying on shareholders to ‘do the right thing’ in monitoring the corporate economy for the common good is, however, a lofty ambition and one that institutional investors have not quite lived up to and may not be well placed to fulfil. The authors argue that challenges to shareholder engagement lie in the limitations of investment management roles and their legal and regulatory frameworks, and that the investment chain, value concerns in investment management and the governance of funds pose challenges for engaged corporate governance roles for institutional investors. These concerns need to be addressed as new expectations are placed on institutional shareholders regarding ESG engagement
Subharmonics and Aperiodicity in Hysteresis Loops
We show that it is possible to have hysteretic behavior for magnets that does
not form simple closed loops in steady state, but must cycle multiple times
before returning to its initial state. We show this by studying the
zero-temperature dynamics of the 3d Edwards Anderson spin glass. The specific
multiple varies from system to system and is often quite large and increases
with system size. The last result suggests that the magnetization could be
aperiodic in the large system limit for some realizations of randomness. It
should be possible to observe this phenomena in low-temperature experiments.Comment: 4 pages, 3 figure
Assessment of Alaska reindeer populations and range conditions
Populations of reindeer (Rangifer tarandus) have fluctated greatly since their introduction to Alaska in 1891. In the 1930s, reported numbers exceeded 600 000. Presently, 38 000 reindeer graze 6.2 million ha of rangeland and woodland in Western Alaska (from 66°54'N to 52°07'N latitude). Condition of winter range producing fruticose lichens (Cladina rangiferina, Cladina arbuscula, Cladina stellaris, Cetraria cucullata, Cetraria islandica) is of major concern. Monitoring programs have been established for vegetation, fire, reindeer and wildlife. Reindeer have overgrazed lichen resources on some Bering Sea Islands. Wildfires have had the greatest impact on lichen range depletion on the mainland. Overgrazing has been a problem in localized areas. Moose (Alces alces) and muskox (Ovibos moschatus) rarely contribute to major lichen depletion. 60-80% of the mainland and 5-30% of most island winter lichen ranges are presently estimated to be in good to excellent ecological condition. Procedures for assessing condition of the lichen ranges are being further refined
Metastability of a granular surface in a spinning bucket
The surface shape of a spinning bucket of granular material is studied using
a continuum model of surface flow developed by Bouchaud et al. and Mehta et al.
An experimentally observed central subcritical region is reproduced by the
model. The subcritical region occurs when a metastable surface becomes unstable
via a nonlinear instability mechanism. The nonlinear instability mechanism
destabilizes the surface in large systems while a linear instability mechanism
is relevant for smaller systems. The range of angles in which the granular
surface is metastable vanishes with increasing system size.Comment: 8 pages with postscript figures, RevTex, to appear in Phys. Rev.
STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection.
UnlabelledSTING (stimulator of interferon [IFN] genes) initiates type I IFN responses in mammalian cells through the detection of microbial nucleic acids. The membrane-bound obligate intracellular bacterium Chlamydia trachomatis induces a STING-dependent type I IFN response in infected cells, yet the IFN-inducing ligand remains unknown. In this report, we provide evidence that Chlamydia synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite not previously identified in Gram-negative bacteria, and that this metabolite is a prominent ligand for STING-mediated activation of IFN responses during infection. We used primary mouse lung fibroblasts and HEK293T cells to compare IFN-β responses to Chlamydia infection, c-di-AMP, and other type I IFN-inducing stimuli. Chlamydia infection and c-di-AMP treatment induced type I IFN responses in cells expressing STING but not in cells expressing STING variants that cannot sense cyclic dinucleotides but still respond to cytoplasmic DNA. The failure to induce a type I IFN response to Chlamydia and c-di-AMP correlated with the inability of STING to relocalize from the endoplasmic reticulum to cytoplasmic punctate signaling complexes required for IFN activation. We conclude that Chlamydia induces STING-mediated IFN responses through the detection of c-di-AMP in the host cell cytosol and propose that c-di-AMP is the ligand predominantly responsible for inducing such a response in Chlamydia-infected cells.ImportanceThis study shows that the Gram-negative obligate pathogen Chlamydia trachomatis, a major cause of pelvic inflammatory disease and infertility, synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite that thus far has been described only in Gram-positive bacteria. We further provide evidence that the host cell employs an endoplasmic reticulum (ER)-localized cytoplasmic sensor, STING (stimulator of interferon [IFN] genes), to detect c-di-AMP synthesized by Chlamydia and induce a protective IFN response. This detection occurs even though Chlamydia is confined to a membrane-bound vacuole. This raises the possibility that the ER, an organelle that innervates the entire cytoplasm, is equipped with pattern recognition receptors that can directly survey membrane-bound pathogen-containing vacuoles for leaking microbe-specific metabolites to mount type I IFN responses required to control microbial infections
- …