340 research outputs found

    New highlights on stroma–epithelial interactions in breast cancer

    Get PDF
    Although the stroma in which carcinomas arise has been previously regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of tumor cells, it is now generally acknowledged that stromal changes are required for the establishment of cancer. In the present article, we discuss three recent publications that highlight the complex role the stroma has during the development of cancer and the potential for targeting the stroma by therapeutic approaches

    Murine Microenvironment Metaprofiles Associate with Human Cancer Etiology and Intrinsic Subtypes

    Get PDF
    Ionizing radiation is a well established carcinogen in rodent models and a risk factor associated with human cancer. We developed a mouse model that captures radiation effects on host biology by transplanting unirradiated Trp53 null mammary tissue to sham or irradiated hosts. Gene expression profiles of tumors that arose in irradiated mice are distinct from those that arose in naïve hosts. We asked whether expression metaprofiles could discern radiation-preceded human cancer or be informative in sporadic breast cancers

    Radiotherapy Suppresses Angiogenesis in Mice through TGF-βRI/ALK5-Dependent Inhibition of Endothelial Cell Sprouting

    Get PDF
    BACKGROUND: Radiotherapy is widely used to treat cancer. While rapidly dividing cancer cells are naturally considered the main target of radiotherapy, emerging evidence indicates that radiotherapy also affects endothelial cell functions, and possibly also their angiogenic capacity. In spite of its clinical relevance, such putative anti-angiogenic effect of radiotherapy has not been thoroughly characterized. We have investigated the effect of ionizing radiation on angiogenesis using in vivo, ex vivo and in vitro experimental models in combination with genetic and pharmacological interventions. PRINCIPAL FINDINGS: Here we show that high doses ionizing radiation locally suppressed VEGF- and FGF-2-induced Matrigel plug angiogenesis in mice in vivo and prevented endothelial cell sprouting from mouse aortic rings following in vivo or ex vivo irradiation. Quiescent human endothelial cells exposed to ionizing radiation in vitro resisted apoptosis, demonstrated reduced sprouting, migration and proliferation capacities, showed enhanced adhesion to matrix proteins, and underwent premature senescence. Irradiation induced the expression of P53 and P21 proteins in endothelial cells, but p53 or p21 deficiency and P21 silencing did not prevent radiation-induced inhibition of sprouting or proliferation. Radiation induced Smad-2 phosphorylation in skin in vivo and in endothelial cells in vitro. Inhibition of the TGF-beta type I receptor ALK5 rescued deficient endothelial cell sprouting and migration but not proliferation in vitro and restored defective Matrigel plug angiogenesis in irradiated mice in vivo. ALK5 inhibition, however, did not rescue deficient proliferation. Notch signaling, known to hinder angiogenesis, was activated by radiation but its inhibition, alone or in combination with ALK5 inhibition, did not rescue suppressed proliferation. CONCLUSIONS: These results demonstrate that irradiation of quiescent endothelial cells suppresses subsequent angiogenesis and that ALK5 is a critical mediator of this suppression. These results extend our understanding of radiotherapy-induced endothelial dysfunctions, relevant to both therapeutic and unwanted effects of radiotherapy

    Regulation of early signaling and gene expression in the α-particle and bystander response of IMR-90 human fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. To understand early signaling and gene regulation in bystander cells, we used a bio-informatics approach, measuring global gene expression at 30 minutes and signaling pathways between 30 minutes and 4 hours after exposure to α-particles in IMR-90 fibroblasts.</p> <p>Methods</p> <p>We used whole human genome microarrays and real time quantitative PCR to measure and validate gene expression. Microarray analysis was done using BRB-Array Tools; pathway and ontology analyses were done using Ingenuity Pathway Analysis and PANTHER, respectively. We studied signaling in irradiated and bystander cells using immunoblotting and semi-quantitative image analysis.</p> <p>Results</p> <p>Gene ontology suggested signal transduction and transcriptional regulation responding 30 minutes after treatment affected cell structure, motility and adhesion, and interleukin synthesis. We measured time-dependent expression of genes controlled by the NF-κB pathway; matrix metalloproteinases 1 and 3; <it/>chemokine ligands 2, 3 and 5 and <it/>interleukins 1β, 6 and 33. There was an increased response of this set of genes 30 minutes after treatment and another wave of induction at 4 hours. We investigated AKT-GSK3β signaling and found both AKT and GSK3β are hyper-phosphorylated 30 minutes after irradiation and this effect is maintained through 4 hours. In bystander cells, a similar response was seen with a delay of 30 minutes. We proposed a network model where the observed decrease in phosphorylation of β-catenin protein after GSK3β dependent inactivation can trigger target gene expression at later times after radiation exposure</p> <p>Conclusions</p> <p>These results are the first to show that the radiation induced bystander signal induces a widespread gene expression response at 30 minutes after treatment and these changes are accompanied by modification of signaling proteins in the PI3K-AKT-GSK3β pathway.</p

    Breast Cancer Cells Induce Cancer-Associated Fibroblasts to Secrete Hepatocyte Growth Factor to Enhance Breast Tumorigenesis

    Get PDF
    It has been well documented that microenvironment consisting of stroma affects breast cancer progression. However, the mechanisms by which cancer cells and fibroblasts, the major cell type in stroma, interact with each other during tumor development remains to be elucidated. Here, we show that the human cancer-associated fibroblasts (CAFs) had higher activity in enhancing breast tumorigenecity compared to the normal tissue-associated fibroblasts (NAFs) isolated from the same patients. The expression level of hepatocyte growth factor (HGF) in these fibroblasts was positively correlated with their ability to enhance breast tumorigenesis in mice. Deprivation of HGF using a neutralizing antibody reduced CAF-mediated colony formation of human breast cancer cells, indicating that CAFs enhanced cancer cell colony formation mainly through HGF secretion. Co-culture with human breast cancer MDA-MB-468 cells in a transwell system enhanced NAFs to secret HGF as well as promote tumorigenecity. The newly gained ability of these “educated” NAFs became irreversible after continuing this process till fourth passage. These results suggested that breast cancer cells could alter the nature of its surrounding fibroblasts to secrete HGF to support its own progression through paracrine signaling

    Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: an agent-based model supported by in vitro studies

    Get PDF
    IntroductionMost human mammary epithelial cells (HMEC) cultured from histologically normal breast tissues enter a senescent state termed stasis after 5 to 20 population doublings. These senescent cells display increased size, contain senescence associated beta-galactosidase activity, and express cyclin-dependent kinase inhibitor, p16INK4A (CDKN2A; p16). However, HMEC grown in a serum-free medium, spontaneously yield, at low frequency, variant (v) HMEC that are capable of long-term growth and are susceptible to genomic instability. We investigated whether ionizing radiation, which increases breast cancer risk in women, affects the rate of vHMEC outgrowth.MethodsPre-stasis HMEC cultures were exposed to 5 to 200 cGy of sparsely (X- or gamma-rays) or densely (1 GeV/amu 56Fe) ionizing radiation. Proliferation (bromodeoxyuridine incorporation), senescence (senescence-associated beta-galactosidase activity), and p16 expression were assayed in subcultured irradiated or unirradiated populations four to six weeks following radiation exposure, when patches of vHMEC became apparent. Long-term growth potential and p16 promoter methylation in subsequent passages were also monitored. Agent-based modeling, incorporating a simple set of rules and underlying assumptions, was used to simulate vHMEC outgrowth and evaluate mechanistic hypotheses.ResultsCultures derived from irradiated cells contained significantly more vHMEC, lacking senescence associated beta-galactosidase or p16 expression, than cultures derived from unirradiated cells. As expected, post-stasis vHMEC cultures derived from both unirradiated and irradiated cells exhibited more extensive methylation of the p16 gene than pre-stasis HMEC cultures. However, the extent of methylation of individual CpG sites in vHMEC samples did not correlate with passage number or treatment. Exposure to sparsely or densely ionizing radiation elicited similar increases in the numbers of vHMEC compared to unirradiated controls. Agent-based modeling indicated that radiation-induced premature senescence of normal HMEC most likely accelerated vHMEC outgrowth through alleviation of spatial constraints. Subsequent experiments using defined co-cultures of vHMEC and senescent cells supported this mechanism.ConclusionsOur studies indicate that ionizing radiation can promote the outgrowth of epigenetically altered cells with pre-malignant potential

    Exploring hypotheses of the actions of TGF-beta 1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis

    Get PDF
    In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta 1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta 1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units ( keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta 1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged ( by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta 1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta 1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing

    The normal breast microenvironment of premenopausal women differentially influences the behavior of breast cancer cells in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer studies frequently focus on the role of the tumor microenvironment in the promotion of cancer; however, the influence of the normal breast microenvironment on cancer cells remains relatively unknown. To investigate the role of the normal breast microenvironment on breast cancer cell tumorigenicity, we examined whether extracellular matrix molecules (ECM) derived from premenopausal African-American (AA) or Caucasian-American (CAU) breast tissue would affect the tumorigenicity of cancer cells <it>in vitro </it>and <it>in vivo</it>. We chose these two populations because of the well documented predisposition of AA women to develop aggressive, highly metastatic breast cancer compared to CAU women.</p> <p>Methods</p> <p>The effects of primary breast fibroblasts on tumorigenicity were analyzed via real-time PCR arrays and mouse xenograft models. Whole breast ECM was isolated, analyzed via zymography, and its effects on breast cancer cell aggressiveness were tested <it>in vitro </it>via soft agar and invasion assays, and <it>in vivo </it>via xenograft models. Breast ECM and hormone metabolites were analyzed via mass spectrometry.</p> <p>Results</p> <p>Mouse mammary glands humanized with premenopausal CAU fibroblasts and injected with primary breast cancer cells developed significantly larger tumors compared to AA humanized glands. Examination of 164 ECM molecules and cytokines from CAU-derived fibroblasts demonstrated a differentially regulated set of ECM proteins and increased cytokine expression. Whole breast ECM was isolated; invasion and soft agar assays demonstrated that estrogen receptor (ER)<sup>-</sup>, progesterone receptor (PR)/PR<sup>- </sup>cells were significantly more aggressive when in contact with AA ECM, as were ER<sup>+</sup>/PR<sup>+ </sup>cells with CAU ECM. Using zymography, protease activity was comparatively upregulated in CAU ECM. In xenograft models, CAU ECM significantly increased the tumorigenicity of ER<sup>+</sup>/PR<sup>+ </sup>cells and enhanced metastases. Mass spectrometry analysis of ECM proteins showed that only 1,759 of approximately 8,000 identified were in common. In the AA dataset, proteins associated with breast cancer were primarily related to tumorigenesis/neoplasia, while CAU unique proteins were involved with growth/metastasis. Using a novel mass spectrometry method, 17 biologically active hormones were measured; estradiol, estriol and 2-methoxyestrone were significantly higher in CAU breast tissue.</p> <p>Conclusions</p> <p>This study details normal premenopausal breast tissue composition, delineates potential mechanisms for breast cancer development, and provides data for further investigation into the role of the microenvironment in cancer disparities.</p

    Tissue level, activation and cellular localisation of TGF-β1 and association with survival in gastric cancer patients

    Get PDF
    Transforming growth factor-β1 (TGF-β1), a tumour suppressing as well as tumour-promoting cytokine, is stored as an extracellular matrix-bound latent complex. We examined TGF-β1 activation and localisation of TGF-β1 activity in gastric cancer. Gastric tumours showed increased stromal and epithelial total TGF-β1 staining by immunohistochemistry. Active TGF-β1 was present in malignant epithelial cells, but most strongly in smooth muscle actin expressing fibroblasts. Normal gastric mucosa from the same patient showed some staining for total, and little for active TGF-β1. Active TGF-β1 levels were determined by ELISA on tissue homogenates, confirming a strong increase in active TGF-β1 in tumours compared to corresponding normal mucosa. Moreover, high tumour TGF-β1 activity levels were significantly associated with clinical parameters, including worse survival of the patients. Total and active TGF-β1 levels were not correlated, suggesting a specific activation process. Of the different proteases tested, active TGF-β1 levels were only correlated with urokinase activity levels. The correlation with urokinase activity suggests a role for plasmin in TGF-β1 activation in the tumour microenvironment, resulting in transformation of resident fibroblasts to tumour promoting myofibroblasts. In conclusion we have shown localisation and clinical relevance of TGF-β1 activity levels in gastric cancer
    corecore