1,307 research outputs found
Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies
Herbivore-induced plant defences influence the behaviour of herbivores as well as that of their natural enemies. Jasmonic acid is one of the key hormones involved in both these direct and indirect induced defences. Jasmonic acid treatment of plants changes the composition of defence chemicals in the plants, induces volatile emission, and increases the production of extrafloral nectar. However, few studies have addressed the potential influence of induced defences on flower nectar chemistry and pollinator behaviour. These have shown that herbivore damage can affect pollination rates and plant fitness. Here, we have investigated the effect of jasmonic acid treatment on floral nectar production and the attraction of pollinators, as well as the effect on the behaviour of an herbivore and its natural enemy. The study system consisted of black mustard plants, Brassica nigra L. (Brassicaceae), pollinators of Brassica nigra (i.e., honeybees and syrphid flies), a specialist herbivore, Pieris rapae L. (Lepidoptera: Pieridae), and a parasitoid wasp that uses Pieris larvae as hosts, Cotesia glomerata L. (Hymenoptera: Braconidae). We show that different trophic levels are differentially affected by jasmonic acid-induced changes. While the herbivore prefers control leaves over jasmonic acid-treated leaves for oviposition, the parasitoid C. glomerata is more attracted to jasmonic acid-treated plants than to control plants. We did not observe differences in pollinator preference, the rates of flower visitation by honeybees and syrphid flies were similar for control and jasmonic acid-treated plants. Plants treated with jasmonic acid secreted less nectar than control plants and the concentrations of glucose and fructose tended to be lower than in nectar from control plants. Jasmonic acid treatment resulted in a lower nectar production than actual feeding damage by P. rapae caterpillars
Comparison of thread-cutting behaviour in three specialist predatory mites to cope with complex webs of Tetranychus spider mites
Anti-predator defenses provided by complex webs of Tetranychus mites can severely impede the performance of generalist predatory mites, whereas this may not be true for specialist predatory mites. Although some specialist predatory mites have developed morphological protection to reduce the adverse effects of complex webs, little is known about their behavioral abilities to cope with the webs. In this study, we compared thread-cutting behavior of three specialist predatory mites, Phytoseiulus persimilis, Neoseiulus womersleyi and N. californicus, exhibited inside the complex web of T. urticae. No major difference was observed among them in the basic pattern of this behavior, using chelicerae and palps, and in the number of silken threads severed while moving inside the web. These results and observations suggest that each predator species cut many sticky silken threads to move inside the complex web without suffering from serious obstructio
Linearized self-forces for branes
We compute the regularized force density and renormalized action due to
fields of external origin coupled to a brane of arbitrary dimension in a
spacetime of any dimension. Specifically, we consider forces generated by
gravitational, dilatonic and generalized antisymmetric form-fields. The force
density is regularized using a recently developed gradient operator. For the
case of a Nambu--Goto brane, we show that the regularization leads to a
renormalization of the tension, which is seen to be the same in both
approaches. We discuss the specific couplings which lead to cancellation of the
self-force in this case.Comment: 15 page
Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity
Although consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae. Hyperparasitoids forage in complex environments where hosts of different quality may be present alongside non-host parasitoid species, each of which can develop in multiple herbivore species. Because both the identity of the herbivore species and its parasitization status can affect the composition of HIPV emission, hyperparasitoids encounter considerable variation in HIPVs during host location. Here, we combined laboratory and field experiments to investigate the role of HIPVs in host selection of hyperparasitoids that search for hosts in a multi-parasitoid multi-herbivore context. In a wild Brassica oleracea-based food web, the hyperparasitoid Lysibia nana preferred HIPVs emitted in response to caterpillars parasitized by the gregarious host Cotesia glomerata over the non-host Hyposoter ebeninus. However, no plant-mediated discrimination occurred between the solitary host C. rubecula and the non-host H. ebeninus. Under both laboratory and field conditions, hyperparasitoid responses were not affected by the herbivore species (Pieris brassicae or P. rapae) in which the three primary parasitoid species developed. Our study shows that HIPVs are an important source of information within multitrophic interaction networks allowing hyperparasitoids to find their preferred hosts in heterogeneous environments
The flatness problem and
By way of a complete integration of the Friedmann equations, in terms of
observables, it is shown that for the cosmological constant there
exist non-flat FLRW models for which the total density parameter
remains throughout the entire history of the universe. Further, it is
shown that in a precise quantitative sense these models are not finely tuned.
When observations are brought to bear on the theory, and in particular the WMAP
observations, they confirm that we live in just such a universe. The conclusion
holds when the classical notion of is extended to dark energy.Comment: Final form to appear in Physical Review Letters. Further information
at http://grtensor.org/Robertson
Optically controlled spin-glasses in multi-qubit cavity systems
Recent advances in nanostructure fabrication and optical control, suggest
that it will soon be possible to prepare collections of interacting two-level
systems (i.e. qubits) within an optical cavity. Here we show theoretically that
such systems could exhibit novel phase transition phenomena involving
spin-glass phases. By contrast with traditional realizations using magnetic
solids, these phase transition phenomena are associated with both matter and
radiation subsystems. Moreover the various phase transitions should be tunable
simply by varying the matter-radiation coupling strength.Comment: 4 pages, 3 figure
Bounds on the Magnetic Fields in the Radiative Zone of the Sun
We discuss bounds on the strength of the magnetic fields that could be buried
in the radiative zone of the Sun. The field profiles and decay times are
computed for all axisymmetric toroidal Ohmic decay eigenmodes with lifetimes
exceeding the age of the Sun. The measurements of the solar oblateness yield a
bound <~ 7 MG on the strength of the field. A comparable bound is expected to
come from the analysis of the splitting of the solar oscillation frequencies.
The theoretical analysis of the double diffusive instability also yields a
similar bound. The oblateness measurements at their present level of
sensitivity are therefore not expected to measure a toroidal field
contribution.Comment: 15 pages, 6 figure
Mach's Principle and Model for a Broken Symmetric Theory of Gravity
We investigate spontaneous symmetry breaking in a conformally invariant
gravitational model. In particular, we use a conformally invariant scalar
tensor theory as the vacuum sector of a gravitational model to examine the idea
that gravitational coupling may be the result of a spontaneous symmetry
breaking. In this model matter is taken to be coupled with a metric which is
different but conformally related to the metric appearing explicitly in the
vacuum sector. We show that after the spontaneous symmetry breaking the
resulting theory is consistent with Mach's principle in the sense that inertial
masses of particles have variable configurations in a cosmological context.
Moreover, our analysis allows to construct a mechanism in which the resulting
large vacuum energy density relaxes during evolution of the universe.Comment: 9 pages, no figure
Drastic effects of damping mechanisms on the third-order optical nonlinearity
We have investigated the optical response of superradiant atoms, which
undergoes three different damping mechanisms: radiative dissipation
(), dephasing (), and nonradiative dissipation
(). Whereas the roles of and are equivalent in
the linear susceptibility, the third-order nonlinear susceptibility drastically
depends on the ratio of and : When , the third-order susceptibility is essentially that of a single atom.
Contrarily, in the opposite case of , the third-order
susceptibility suffers the size-enhancement effect and becomes proportional to
the system size.Comment: 5pages, 2figure
- …