10 research outputs found
The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)
Contributions of the Pierre Auger Collaboration to the 34th International
Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July
- 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015
Microevolution of Helicobacter pylori Type IV Secretion Systems in an Ulcer Disease Patient over a Ten-Year Periodâ–ż
Helicobacter pylori cagA and vacA genotypes have been used for almost a decade as stable entities to link the severity of gastritis and ulcer disease. We describe here microevolution of the two genomic islands, cag pathogenicity island (cagPAI; 40 kb) and tfs3 (16 kb) from isolates obtained at inclusion (one subclone) and after a 10-year period (two subclones) from a duodenal ulcer patient. Our results indicate microevolution in cagA, cagE, and cag7 genes of the cagPAI and open reading frames G, P, and L in tfs3, which possibly leads to inactivation or pseudogenization of these genes. Interestingly, no significant reduction in the severity of gastroduodenal pathology was found. These results point to an obvious difficulty in correlating the continuously evolving virulence factors such as the cagPAI genes with disease characteristics that appear to remain stable
Loss of the KN Motif and AnKyrin Repeat Domain 1 (KANK1) Leads to Lymphoid Compartment Dysregulation in Murine Model
The KN Motif and AnKyrin Repeat Domain 1 (KANK1) is proposed as a tumour suppressor gene, as its expression is reduced or absent in several types of tumour tissue, and over-expressing the protein inhibited the proliferation of tumour cells in solid cancer models. We report a novel germline loss of heterozygosity mutation encompassing the KANK1 gene in a young patient diagnosed with myelodysplastic neoplasm (MDS) with no additional disease-related genomic aberrations. To study the potential role of KANK1 in haematopoiesis, we generated a new transgenic mouse model with a confirmed loss of KANK1 expression. KANK1 knockout mice did not develop any haematological abnormalities; however, the loss of its expression led to alteration in the colony forming and proliferative potential of bone marrow (BM) cells and a decrease in hematopoietic stem and progenitor cells (HSPCs) population frequency. A comprehensive marker expression analysis of lineage cell populations indicated a role for Kank1 in lymphoid cell development, and total protein analysis suggests the involvement of Kank1 in BM cells' cytoskeleton formation and mobility
Loss of the KN Motif and AnKyrin Repeat Domain 1 (KANK1) Leads to Lymphoid Compartment Dysregulation in Murine Model
The KN Motif and AnKyrin Repeat Domain 1 (KANK1) is proposed as a tumour suppressor gene, as its expression is reduced or absent in several types of tumour tissue, and over-expressing the protein inhibited the proliferation of tumour cells in solid cancer models. We report a novel germline loss of heterozygosity mutation encompassing the KANK1 gene in a young patient diagnosed with myelodysplastic neoplasm (MDS) with no additional disease-related genomic aberrations. To study the potential role of KANK1 in haematopoiesis, we generated a new transgenic mouse model with a confirmed loss of KANK1 expression. KANK1 knockout mice did not develop any haematological abnormalities; however, the loss of its expression led to alteration in the colony forming and proliferative potential of bone marrow (BM) cells and a decrease in hematopoietic stem and progenitor cells (HSPCs) population frequency. A comprehensive marker expression analysis of lineage cell populations indicated a role for Kank1 in lymphoid cell development, and total protein analysis suggests the involvement of Kank1 in BM cells’ cytoskeleton formation and mobility
Modulation of the redox state of the copper sites of human ceruloplasmin by chloride
Incubation of human ceruloplasmin with physiological concentrations of chloride at neutral pH invariably caused dramatic changes of both the spectroscopic and the functional properties of the protein. The optical intensity at 610 nm increased up to 60%, with a concomitant decrease at 330 nm and the appearance of new bands between 410 and 500 nm, Signals previously undetectable appeared in the EPR spectrum. On the basis of computer simulations, they were interpreted as stemming from an oxidized type 1 copper site and from a half-reduced type 3 copper pair. Removal of chloride completely restored the original optical and EPR lineshapes. Hydrogen peroxide, added to ceruloplasmin in the presence of chloride, was able to capture the electron of the half-reduced type 3 site and to yield a protein insensitive to subsequent removal and readdition of the anion. As a whole, the spectroscopic data indicate that a blue site is partially reduced in the resting protein and that, upon binding of chloride, human ceruloplasmin undergoes a structural change leading to displacement of an electron from the reduced type 1 site to the type 3 site pair. Chloride dramatically affected the catalytic efficiency of human ceruloplasmin. At neutral pH, the anion was an activator of the oxidase activity, being able to enhance up to tenfold the catalytic rate. At pH < 6, in line with all previous reports, chloride strongly inhibited the activity, At intermediate pH values, i.e., around 6, the effect was composite, with an activating effect at low concentration and an inhibitory effect at higher concentration. Since chloride is present at very high concentrations in the plasma, these results suggest that human ceruloplasmin is, in the plasma, under control of this anion