185 research outputs found

    A Suzuki Coupling Based Route to 2,2'-Bis(2-indenyl)biphenyl Derivatives

    Get PDF
    Because of the promising performance in olefin polymerization of 2,2'-bis(2-indenyldiyl)biphenyl zirconium dichloride, we developed a new and broadly applicable route to 2,2'-bis(2-indenyl)biphenyl derivatives. Reaction of the known 2,2'-diiodobiphenyl with the new 2-indenyl boronic acid did not result in the desired 2,2'-bis(2-indenyl)biphenyl (10); instead an isomer thereof, (spiro-1,1-(2,2'-biphenyl)-2-(2-indenyl)indane), was obtained. It was found that compound 10 could be made via a palladium-catalyzed reaction of 2,2-biphenyldiboronic acid with 2-bromoindene under standard Suzuki reaction conditions. However, the yield of this reaction was low at low palladium catalyst loadings, due to a competitive hydrolysis reaction of 2,2-biphenyldiboronic acid. HTE techniques were used to find an economically viable protocol. Thus, use of the commercially available 1.0 molar solution of (n-Bu)4NOH in methanol with cosolvent toluene led to precipitation of the pure product in a fast and clean reaction, using only 0.7 mol % (0.35 mol % per C-C) of the expensive palladium catalyst.

    Oxalic acid hydrogenation to glycolic acid:heterogeneous catalysts screening

    Get PDF
    To meet our ambitions of a future circular economy and drastically reduce CO2 emissions, we need to make use of CO2 as a feedstock. Turning CO2 into monomers to produce sustainable plastics is an attractive option for this purpose. It can be achieved by electrochemical reduction of CO2 to formic acid derivatives, that can subsequently be converted into oxalic acid. Oxalic acid can be a monomer itself and it is a potential new platform chemical for material production, as useful monomers such as glycolic acid and ethylene glycol can be derived from it. Today the most common route from oxalic acid to glycolic acid requires multiple steps as it proceeds via oxalic acid di-esters as intermediates. In this work, we aim to avoid the extra reaction step of esterification. We explore the direct conversion of oxalic acid to glycolic acid in a two-step approach. In the first step, we define the ideal reaction conditions and test commercially available catalysts. We show that the reduction of oxalic acid can be performed at much lower temperatures and glycolic acid yields higher than those reported previously can be obtained. In the second step, we explore the design principles required for ideal catalysts which avoid the formation of acetic acid and ethylene glycol as side products. We show that ruthenium is the most active metal for the reaction and that carbon appears the most suitable support for these catalysts. By adding tin as a promotor, we could increase the selectivity and yield further whilst maintaining high activity of the resulting catalyst. This research lays the foundation for the efficient direct reduction of oxalic acid to glycolic acid and defines the design parameters for even better catalysts and the ideal process and conditions.</p

    Formate as a key intermediate in CO<sub>2</sub> utilization

    Get PDF
    Replacing fossil feedstocks for chemicals and polymers in the chemical industry is a key step towards a future circular society. Making use of CO2 as a starting material in Carbon Capture and Utilization (CCU) or Carbon Capture and Storage (CCS) processes presents a great opportunity. Unfortunately, converting CO2 is not easy - due to its stability and inherently low reactivity either high energy inputs or nifty catalytic systems are required for its conversion. An electrochemical cell using a gas-diffusion electrode to convert CO2 into formate is such a promising system. But making formate alone does not allow us to substitute many fossil carbon-fed processes. Oxalic acid on the other hand is a potential new platform chemical for material production as useful monomers such as glycolic acid can be derived from it. Fortunately, formate can be converted into oxalate (and subsequently oxalic acid) by coupling two formates in a formate to oxalate coupling reaction (FOCR). The FOCR is a reaction that has been studied for more than 175 years and has seen widespread industrial use in the past. In this work, we critically discuss the history of the FOCR, present the most recent advances and draw a perspective for its future. We provide an overview of all (side)products obtained in FOCR and examine the various reaction parameters and their ability to influence the reaction. To understand the reaction better and improve it in the future, we critically discuss the many mechanisms proposed for the various catalytic systems in the FOCR. At last, we explore the potential to introduce new catalytic and solvent systems or co-reactants to the FOCR to improve reaction performance and broaden the range of products from CO2 derived formate

    Looking back at superfluid helium

    Full text link
    A few years after the discovery of Bose Einstein condensation in several gases, it is interesting to look back at some properties of superfluid helium. After a short historical review, I comment shortly on boiling and evaporation, then on the role of rotons and vortices in the existence of a critical velocity in superfluid helium. I finally discuss the existence of a condensate in a liquid with strong interactions, and the pressure variation of its superfluid transition temperature.Comment: Conference "Bose Einstein Condensation", Institut henri Poincare, Paris, 29 march 200

    CO(2)electroreduction on bimetallic Pd-In nanoparticles

    Get PDF
    CO(2)electroreduction powered by renewable energy is an attractive strategy to recycle air-based carbon. One of the current challenges for the scale up of the technology is that the catalysts that show high faradaic yield at high current density (post-transitional metals such as In, Sn, Bi, Pb) suffer from very high overpotentials of more than 1 V. On the other hand, Pd can convert CO(2)to formate with almost no overpotential, but is readily poisoned by CO and deactivates when trying to reach industrially relevant currents. In this work we show the effect of the interaction of In and Pd in bimetallic nanoparticles, reaching the conclusion that this interaction causes a loss of selectivity towards formate and at the same time suppresses CO poisoning of Pd sites. The results of the catalyst characterization suggest the formation of intermetallic PdIn compounds that in turn cause the aforementioned behavior. Based on these results, it seems that geometric and electronic effects in Pd based intermetallic compounds can alleviate CO poisoning on Pd sites. In the case of PdIn intermetallics this leads to the loss of CO(2)reduction activity, but this strategy may be useful for other electrochemical reactions that suffer from the same problem of deactivation. It remains to be seen if intermetallic compounds of Pd with other elements can yield viable CO(2)reduction catalysts.Catalysis and Surface Chemistr
    corecore