947 research outputs found
A study of local and non-local spatial densities in quantum field theory
We use a one-dimensional model system to compare the predictions of two
different 'yardsticks' to compute the position of a particle from its quantum
field theoretical state. Based on the first yardstick (defined by the
Newton-Wigner position operator), the spatial density can be arbitrarily narrow
and its time-evolution is superluminal for short time intervals. Furthermore,
two spatially distant particles might be able to interact with each other
outside the light cone, which is manifested by an asymmetric spreading of the
spatial density. The second yardstick (defined by the quantum field operator)
does not permit localized states and the time evolution is subluminal.Comment: 29 pages, 3 figure
Magnetic control of the pair creation in spatially localized supercritical fields
We examine the impact of a perpendicular magnetic field on the creation mechanism of electron-positron pairs in a supercritical static electric field, where both fields are localized along the direction of the electric field. In the case where the spatial extent of the magnetic field exceeds that of the electric field, quantum field theoretical simulations based on the Dirac equation predict a suppression of pair creation even if the electric field is supercritical. Furthermore, an arbitrarily small magnetic field outside the interaction zone can bring the creation process even to a complete halt, if it is sufficiently extended. The mechanism for this magnetically induced complete shutoff can be associated with a reopening of the mass gap and the emergence of electrically dressed Landau levels
Schmidt Analysis of Pure-State Entanglement
We examine the application of Schmidt-mode analysis to pure state
entanglement. Several examples permitting exact analytic calculation of Schmidt
eigenvalues and eigenfunctions are included, as well as evaluation of the
associated degree of entanglement.Comment: 5 pages, 3 figures, for C.M. Bowden memoria
Recommended from our members
Broad spectrum proteomics analysis of the inferior colliculus following acute hydrogen sulfide exposure.
Acute exposure to high concentrations of H2S causes severe brain injury and long-term neurological disorders, but the mechanisms involved are not known. To better understand the cellular and molecular mechanisms involved in acute H2S-induced neurodegeneration we used a broad-spectrum proteomic analysis approach to identify key molecules and molecular pathways involved in the pathogenesis of acute H2S-induced neurotoxicity and neurodegeneration. Mice were subjected to acute inhalation exposure of up to750 ppm of H2S. H2S induced behavioral deficits and severe lesions including hemorrhage in the inferior colliculus (IC). The IC was microdissected for proteomic analysis. Tandem mass tags (TMT) liquid chromatography mass spectrometry (LC-MS/MS)-based quantitative proteomics was applied for protein identification and quantitation. LC-MS/MS identified 598, 562, and 546 altered proteomic changes at 2 h, and on days 2 and 4 post-H2S exposure, respectively. Of these, 77 proteomic changes were statistically significant at any of the 3 time points. Mass spectrometry data were subjected to Perseus 1.5.5.3 statistical analysis, and gene ontology heat map clustering. Expressions of several key molecules were verified to confirm H2S-dependent proteomics changes. Webgestalt pathway overrepresentation enrichment analysis with Panther engine revealed H2S exposure disrupted several biological processes including metabotropic glutamate receptor group 1 and inflammation mediated by chemokine and cytokine signaling pathways among others. Further analysis showed that energy metabolism, integrity of blood-brain barrier, hypoxic, and oxidative stress signaling pathways were also implicated. Collectively, this broad-spectrum proteomics data has provided important clues to follow up in future studies to further elucidate mechanisms of H2S-induced neurotoxicity
Pair creation rates for one-dimensional fermionic and bosonic vacua
We compare the creation rates for particle-antiparticle pairs produced by a supercritical force field for fermionic and bosonic model systems. The rates obtained from the Dirac and Klein-Gordon equations can be computed directly from the quantum-mechanical transmission coefficients describing the scattering of an incoming particle with the supercritical potential barrier. We provide a unified framework that shows that the bosonic rates can exceed the fermionic ones, as one could expect from the Pauli-exclusion principle for the fermion system. This imbalance for small but supercritical forces is associated with the occurrence of negative bosonic transmission coefficients of arbitrary size for the Klein-Gordon system, while the Dirac coefficient is positive and bound by unity. We confirm the transmission coefficients with time-dependent scattering simulations. For large forces, however, the fermionic and bosonic pair-creation rates are surprisingly close to each other. The predicted pair creation rates also match the slopes of the time-dependent particle probabilities obtained from large-scale ab initio numerical simulations based on quantum field theory
Space-time properties of a boson-dressed fermion for the Yukawa model
We analyze the interaction of fermions and bosons through a one-dimensional Yukawa model. We numerically compute the energy eigenstates that represent a physical fermion, which is a superposition of bare fermionic and bosonic eigenstates of the uncoupled Hamiltonian. It turns out that even fast bare fermions require only low-momentum dressing bosons, which attach themselves to the fast fermion through quantum correlations. We compare the space-time evolution of a physical fermion with that of its bare counterpart and show the importance of using dressed observables. The time evolution of the center of mass as well as the wave packet\u27s spatial width suggests that the physical particle has a lower mass than the sum of the masses of its bare constituents. The numerically predicted dressed mass agrees with that from lowest-order perturbation theory as well as with the renormalized mass obtained from the corresponding Feynman graphs. For a given momentum, this lower mass leads to a faster physical particle and a different relativistic spreading behavior of the wave packet
Bosonic analog of the Klein paradox
The standard Klein paradox describes how an incoming electron scatters off a supercritical electrostatic barrier that is so strong that it can generate electron- positron pairs. This fermionic system has been widely discussed in textbooks to illustrate some of the discrepancies between quantum mechanical and quantum field theoretical descriptions for the pair creation process. We compare the fermionic dynamics with that of the corresponding bosonic system. We point out that the direct counterpart of the Pauli exclusion principle (the central mechanism to resolve the fermionic Klein paradox) is stimulated emission, which leads to the resolution of the analogous bosonic paradox
Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states
We study the creation of electron-positron pairs induced by two spatially separated electric fields that vary periodically in time. The results are based on large-scale computer simulations of the time-dependent Dirac equation in reduced spatial dimensions. When the separation of the fields is very large, the pair creation is caused by multiphoton transitions and mainly determined by the frequency of the fields. However, for small spatial separations a coherence effect can be observed that can enhance or reduce the particle yield compared to the case of two infinitely separated fields. If the travel time for a created electron or positron between both field locations becomes comparable to the period of the oscillating fields, we observe peaks in the energy spectrum which can be explained in terms of field-induced transient bound states
Exponential enhancement of field-induced pair creation from the bosonic vacuum
Using numerical solutions to quantum field theory, the creation of boson-antiboson pairs from the vacuum under a very strong localized external electric field is explored. The simulations reveal that the initial linear increase of the number of particles turns into an exponential growth. This self-amplification can be understood as the result of the interaction of the previously generated particles with the creation process. While the number of particles keeps increasing, the spatial shape of the (normalized) charge density of the created particles reaches a universal form that can be related to the bound states of the supercritical potential well. We accompany the space-time resolved quantum field theoretical simulations with a model calculation that allows us to interpret the numerical simulations in terms of simple classical mechanical concepts
- …