8 research outputs found

    PPARa modulation of mesolimbic dopamine transmission rescues depression-related behaviors

    No full text
    Depressive disorders cause a substantial burden for the individual and the society. Key depressive symptoms can be modeled in animals and enable the development of novel therapeutic interventions. Chronic unavoidable stress disrupts rats' competence to escape noxious stimuli and self-administer sucrose, configuring a depression model characterized by escape deficit and motivational anhedonia associated to impaired dopaminergic responses to sucrose in the nucleus accumbens shell (NAcS). Repeated treatments that restore these responses also relieve behavioral symptoms. Ventral tegmental area (VTA) dopamine neurons encode reward and motivation and are implicated in the neuropathology of depressive-like behaviors. Peroxisome proliferator-activated receptors type-α (PPARα) acutely regulate VTA dopamine neuron firing via β2 subunit-containing nicotinic acetylcholine receptors (β2*nAChRs) through phosphorylation and this effect is predictive of antidepressant-like effects. Here, by combining behavioral, electrophysiological and biochemical techniques, we studied the effects of repeated PPARα stimulation by fenofibrate on mesolimbic dopamine system. We found decreased β2*nAChRs phosphorylation levels and a switch from tonic to phasic activity of dopamine cells in the VTA, and increased phosphorylation of dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32) in the NAcS. We then investigated whether long-term fenofibrate administration to stressed rats reinstated the decreased DARPP-32 response to sucrose and whether this effect translated into antidepressant-like properties. Fenofibrate restored dopaminergic responses to appetitive stimuli, reactivity to aversive stimuli and motivation to self-administer sucrose. Overall, this study suggests PPARα as new targets for antidepressant therapies endowed with motivational anti-anhedonic properties, further supporting the role of an unbalanced mesolimbic dopamine system in pathophysiology of depressive disorders

    Profile of spinal and supra-spinal antinociception of (-)-linalool

    No full text
    We previously reported that administration of (-)-linalool, the naturally occurring enantiomer in essential oils, induced a significant reduction in carrageenin-induced oedema and in acetic acid-induced writhing. The latter effect was completely antagonised by the muscarinic receptor antagonist atropine and by the opioid receptor antagonist naloxone. To further characterise the antinociceptive profile of (-)-linalool, we studied its effect in the hot plate and the formalin in tests. In addition, to determine the possible involvement of the cholinergic, opioidergic and dopaminergic systems, we tested the effects of atropine, pirenzepine, a muscarinic M1 receptor antagonist, naloxone, sulpiride, a dopamine D2 receptor antagonist and (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH-23390), a dopamine D1 receptor antagonist on (-)-linalool-induced antinociception. Moreover, since K+ channels seem to play an important role in the mechanisms of pain modulation, we examined the effect of glibenclamide, an ATP-sensitive K+ channel inhibitor on (-)-linalool-induced antinociception. The administration of (-)-linalool (100 and 150 mg/kg, s.c.) increased the reaction time in the hot-plate test. Moreover, (-)-linalool (50 and 100 mg/kg) produced a significant reduction in the early acute phase of the formalin model, but not in the late tonic phase. The highest dose (150 mg/kg) caused a significant antinociceptive effect on both phases. The antinociceptive effects of (-)-linalool were decreased by pre-treatment with atropine, naloxone, sulpiride and glibenclamide but not by pirenzepine and SCH-23390. These results are in agreement with the demonstrated pharmacological properties of linalool, mainly its cholinergic, local anaesthetic activity and its ability to block NMDA receptors. Furthermore, a key role seems to be played by K+ channels, whose opening might be the consequence of a stimulation of muscarinic M2, opioid or dopamine D2 receptors

    5alpha-reductase inhibitors dampen L-DOPA-induced dyskinesia via normalization of dopamine D1-receptor signaling pathway and D1-D3 receptor interaction

    No full text
    Although 1-3,4-dihydroxyphenylalanine (L-DOPA) is the mainstay therapy for treating Parkinson's disease (PD), its long-term administration is accompanied by the development of motor complications, particularly L-DOPA induced dyskinesia (LID), that dramatically affects patients’ quality of life. LID has consistently been related to an excessive dopamine receptor transmission, particularly at the down-stream signaling of the striatal D1receptors (D1R), resulting in an exaggerated stimulation of cAMP-dependent protein kinase and extracellular signal-regulated kinase (ERK) pathway. We previously reported that pharmacological blockade of 5alpha-reductase (5AR), the rate-limiting enzyme in neurosteroids synthesis, attenuates the severity of a broad set of behavioral alterations induced by D1R and D3R activation, without inducing extrapyramidal symptoms. In line with this evidence, in a recent study, we found that inhibition of 5AR by finasteride (FIN) produced a significant reduction of dyskinesia induced by L-DOPA and direct dopaminergic agonists in 6-OHDA-lesioned rats. In the attempt to further investigate the effect of 5AR inhibitors on dyskinesia and shed light on the mechanism of action, in the present study we compared the effect of FIN and dutasteride (DUTA), a potent dual 5AR inhibitor, on the development of LID, on the therapeutic efficacy of L-DOPA, on the molecular alterations downstream to the D1R, as well as on D1R-D3R interaction. The results indicated that both FIN and DUTA administration significantly reduced development and expression of LID; however, DUTA appeared more effective than FIN at a lower dose and produced its antidyskinetic effect without impacting the ability of L-DOPA to increase motor activation, or ameliorate forelimb use in parkinsonian rats. Moreover, this study demonstrates for the first time that 5AR inhibitors are able to prevent key events in the appearance of dyskinesia, such as L-DOPA-induced upregulation of striatal D1R-related cAMP/PKA/ERK signaling pathways and D1R-D3R coimmunoprecipitation, an index of heteromer formation. These findings are relevant as they confirm the 5AR enzyme as a potential therapeutic target for treatment of dyskinesia in PD, suggesting the first ever evidence that neurosteroidogenesis may affect functional interaction between dopamine D1R and D3R

    Using sertraline in postpartum and breastfeeding: balancing risks and benefits

    No full text
    Introduction: The World Health Organization recommends newborns to be breastfed but this may be challenging if the mother needs to be treated for depression, since strong evidence to inform treatment choice is missing. Areas covered: We provide a critical review of the literature to guide clinicians who are considering sertraline for the management of depression during postpartum. Expert opinion: Sertraline is one of the safest antidepressants during breastfeeding. In most cases, women already taking sertraline should be advised to breastfeed and continue the medication. We recommend to begin with low doses and to slowly increase the dose up, with careful monitoring of the newborn for adverse effects (irritability, poor feeding, or uneasy sleep, especially if the child was born premature or had low weight at birth). The target dose should be the lowest effective. When feasible, child exposure to the medication may be reduced by avoiding breastfeeding at the time when the antidepressant milk concentration is at its peak. A decision to switch to sertraline from ongoing and effective treatment should be taken only after a scrupulous evaluation of the potential risks and benefits of switching versus continuing the ongoing medication while monitoring the infant carefully

    Gene-environment interactions in antisocial behavior are mediated by early-life 5-HT2A receptor activation

    No full text
    The ontogeny of antisocial behavior (ASB) is rooted in complex gene-environment (G×E) interactions. The best-characterized of these interplays occurs between: a) low-activity alleles of the gene encoding monoamine oxidase A (MAOA), the main serotonin-degrading enzyme; and b) child maltreatment. The purpose of this study was to develop the first animal model of this G×E interaction, to help understand the neurobiological mechanisms of ASB and identify novel targets for its therapy. Maoa hypomorphic transgenic mice were exposed to an early-life stress regimen consisting of maternal separation and daily intraperitoneal saline injections and were then compared with their wild-type and non-stressed controls for ASB-related neurobehavioral phenotypes. Maoa hypomorphic mice subjected to stress from postnatal day (PND) 1 through 7 – but not during the second postnatal week - developed overt aggression, social deficits and abnormal stress responses from the fourth week onwards. On PND 8, these mice exhibited low resting heart rate - a well-established premorbid sign of ASB – and a significant and selective up-regulation of serotonin 5-HT2A receptors in the prefrontal cortex. Notably, both aggression and neonatal bradycardia were rescued by the 5-HT2 receptor antagonist ketanserin (1–3 mg kg−1, IP), as well as the selective 5-HT2A receptor blocker MDL-100,907 (volinanserin, 0.1–0.3 mg kg−1, IP) throughout the first postnatal week. These findings provide the first evidence of a molecular basis of G×E interactions in ASB and point to early-life 5-HT2A receptor activation as a key mechanism for the ontogeny of this condition
    corecore