174 research outputs found

    Atmospheric studies of habitability in the Gliese 581 system

    Full text link
    The M-type star Gliese 581 is orbited by at least one terrestrial planet candidate in the habitable zone, i.e. GL 581 d. Orbital simulations have shown that additional planets inside the habitable zone of GL 581 would be dynamically stable. Recently, two further planet candidates have been claimed, one of them in the habitable zone. In view of the ongoing search for planets around M stars which is expected to result in numerous detections of potentially habitable Super-Earths, we take the GL 581 system as an example to investigate such planets. In contrast to previous studies of habitability in the GL 581 system, we use a consistent atmospheric model to assess surface conditions and habitability. Furthermore, we perform detailed atmospheric simulations for a much larger subset of potential planetary and atmospheric scenarios than previously considered. A 1D radiative-convective atmosphere model is used to calculate temperature and pressure profiles of model atmospheres, which we assumed to be composed of molecular nitrogen, water, and carbon dioxide. In these calculations, key parameters such as surface pressure and CO2 concentration as well as orbital distance and planetary mass are varied. Results imply that surface temperatures above freezing could be obtained, independent of the here considered atmospheric scenarios, at an orbital distance of 0.117 AU. For an orbital distance of 0.146 AU, CO2 concentrations as low as 10 times the present Earth's value are sufficient to warm the surface above the freezing point of water. At 0.175 AU, only scenarios with CO2 concentrations of 5% and 95% were found to be habitable. Hence, an additional Super-Earth planet in the GL 581 system in the previously determined dynamical stability range would be considered a potentially habitable planet.Comment: 5 pages, 4 figures, accepted in Astronomy&Astrophysic

    New Insights into Cosmic Ray induced Biosignature Chemistry in Earth-like Atmospheres

    Full text link
    With the recent discoveries of terrestrial planets around active M-dwarfs, destruction processes masking the possible presence of life are receiving increased attention in the exoplanet community. We investigate potential biosignatures of planets having Earth-like (N2_2-O2_2) atmospheres orbiting in the habitable zone of the M-dwarf star AD Leo. These are bombarded by high energetic particles which can create showers of secondary particles at the surface. We apply our cloud-free 1D climate-chemistry model to study the influence of key particle shower parameters and chemical efficiencies of NOx and HOx production from cosmic rays. We determine the effect of stellar radiation and cosmic rays upon atmospheric composition, temperature, and spectral appearance. Despite strong stratospheric O3_3 destruction by cosmic rays, smog O3_3 can significantly build up in the lower atmosphere of our modeled planet around AD Leo related to low stellar UVB. N2_2O abundances decrease with increasing flaring energies but a sink reaction for N2_2O with excited oxygen becomes weaker, stabilizing its abundance. CH4_4 is removed mainly by Cl in the upper atmosphere for strong flaring cases and not via hydroxyl as is otherwise usually the case. Cosmic rays weaken the role of CH4_4 in heating the middle atmosphere so that H2_2O absorption becomes more important. We additionally underline the importance of HNO3_3 as a possible marker for strong stellar particle showers. In a nutshell, uncertainty in NOx and HOx production from cosmic rays significantly influences biosignature abundances and spectral appearance.Comment: Manuscript version after addressing all referee comments. Published in Ap

    Consistently Simulating a Wide Range of Atmospheric Scenarios for K2-18b with a Flexible Radiative Transfer Module

    Full text link
    The atmospheres of small, potentially rocky exoplanets are expected to cover a diverse range in composition and mass. Studying such objects therefore requires flexible and wide-ranging modeling capabilities. We present in this work the essential development steps that lead to our flexible radiative transfer module, REDFOX, and validate REDFOX for the Solar system planets Earth, Venus and Mars, as well as for steam atmospheres. REDFOX is a k-distribution model using the correlated-k approach with random overlap method for the calculation of opacities used in the δ\delta-two-stream approximation for radiative transfer. Opacity contributions from Rayleigh scattering, UV / visible cross sections and continua can be added selectively. With the improved capabilities of our new model, we calculate various atmospheric scenarios for K2-18b, a super-Earth / sub-Neptune with ∼\sim8 M⊕_\oplus orbiting in the temperate zone around an M-star, with recently observed H2_2O spectral features in the infrared. We model Earth-like, Venus-like, as well as H2_2-He primary atmospheres of different Solar metallicity and show resulting climates and spectral characteristics, compared to observed data. Our results suggest that K2-18b has an H2_2-He atmosphere with limited amounts of H2_2O and CH4_4. Results do not support the possibility of K2-18b having a water reservoir directly exposed to the atmosphere, which would reduce atmospheric scale heights, hence too the amplitudes of spectral features inconsistent with the observations. We also performed tests for H2_2-He atmospheres up to 50 times Solar metallicity, all compatible with the observations.Comment: 28 pages, 13 figures, accepted for publication in Ap

    Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs

    Get PDF
    We investigate the detectability of atmospheric spectral features of Earth-like planets in the habitable zone (HZ) around M dwarfs with the future James Webb Space Telescope (JWST). We use a coupled 1D climate-chemistry-model to simulate the influence of a range of observed and modelled M-dwarf spectra on Earth-like planets. The simulated atmospheres served as input for the calculation of the transmission spectra of the hypothetical planets, using a line-by-line spectral radiative transfer model. To investigate the spectroscopic detectability of absorption bands with JWST we further developed a signal-to-noise ratio (S/N) model and applied it to our transmission spectra. High abundances of CH4_4 and H2_2O in the atmosphere of Earth-like planets around mid to late M dwarfs increase the detectability of the corresponding spectral features compared to early M-dwarf planets. Increased temperatures in the middle atmosphere of mid- to late-type M-dwarf planets expand the atmosphere and further increase the detectability of absorption bands. To detect CH4_4, H2_2O, and CO2_2 in the atmosphere of an Earth-like planet around a mid to late M dwarf observing only one transit with JWST could be enough up to a distance of 4 pc and less than ten transits up to a distance of 10 pc. As a consequence of saturation limits of JWST and less pronounced absorption bands, the detection of spectral features of hypothetical Earth-like planets around most early M dwarfs would require more than ten transits. We identify 276 existing M dwarfs (including GJ 1132, TRAPPIST-1, GJ 1214, and LHS 1140) around which atmospheric absorption features of hypothetical Earth-like planets could be detected by co-adding just a few transits. We show that using transmission spectroscopy, JWST could provide enough precision to be able to partly characterise the atmosphere of Earth-like TESS planets around mid to late M dwarfs.Comment: 18 pages, 10 figure

    The habitability of a stagnant-lid Earth

    Full text link
    Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2_2O and CO2_2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2_2O and CO2_2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2_2O and CO2_2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2_2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2_2, can vary in a non-monotonic way depending on the extent of the outgassed H2_2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability

    The extrasolar planet Gliese 581 d: a potentially habitable planet? (Corrigendum to arXiv:1009.5814)

    Full text link
    We report here that the equation for H2O Rayleigh scattering was incorrectly stated in the original paper [arXiv:1009.5814]. Instead of a quadratic dependence on refractivity r, we accidentally quoted an r^4 dependence. Since the correct form of the equation was implemented into the model, scientific results are not affected.Comment: accepted to Astronomy&Astrophysic

    Clouds in the atmospheres of extrasolar planets. II. Thermal emission spectra of Earth-like planets influenced by low and high-level clouds

    Full text link
    We study the impact of multi-layered clouds (low-level water and high-level ice clouds) on the thermal emission spectra of Earth-like planets orbiting different types of stars. Clouds have an important influence on such planetary emission spectra due to their wavelength dependent absorption and scattering properties. We also investigate the influence of clouds on the ability to derive information about planetary surface temperatures from low-resolution spectra.Comment: accepted for publication in A&

    The unstable CO2 feedback cycle on ocean planets

    Get PDF
    Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planet

    Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones

    Full text link
    The effects of multi-layered clouds in the atmospheres of Earth-like planets orbiting different types of stars are studied. The radiative effects of cloud particles are directly correlated with their wavelength-dependent optical properties. Therefore the incident stellar spectra may play an important role for the climatic effect of clouds. We discuss the influence of clouds with mean properties measured in the Earth's atmosphere on the surface temperatures and Bond albedos of Earth-like planets orbiting different types of main sequence dwarf stars.Comment: accepted for publication in A&
    • …
    corecore