522 research outputs found

    Asteroseismology of Massive Stars : Some Words of Caution

    Full text link
    Although playing a key role in the understanding of the supernova phenomenon, the evolution of massive stars still suffers from uncertainties in their structure, even during their "quiet" main sequence phase and later on during their subgiant and helium burning phases. What is the extent of the mixed central region? In the local mixing length theory (LMLT) frame, are there structural differences using Schwarzschild or Ledoux convection criterion? Where are located the convective zone boundaries? Are there intermediate convection zones during MS and post-MS phase, and what is their extent and location? We discuss these points and show how asteroseismology could bring some light on these questions.Comment: 10 pages, 5 figures, IAU Symposium 307, New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry, G. Meynet, C. Georgy, J.H. Groh & Ph. Stee, ed

    Phase diagram of the Kondo necklace: a mean-field renormalization group approach

    Full text link
    In this paper we investigate the magnetic properties of heavy fermions in the antiferromagnetic and dense Kondo phases in the framework of the Kondo necklace model. We use a mean field renormalization group approach to obtain a temperature versus Kondo coupling (TJ)(T-J) phase diagram for this model in qualitative agreement with Doniach's diagram, proposed on physical grounds. We further analyze the magnetically disordered phase using a two-sites approach. We calculate the correlation functions and the magnetic susceptibility that allow to identify the crossover between the spin-liquid and the local moment regimes, which occurs at a {\em coherence} temperature.Comment: 5 figure

    Effect of skin fracture on failure of a bilayer polymer structure

    Get PDF
    Accepted versio

    Apsidal motion in the massive binary HD152218

    Full text link
    Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a separating code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of 19.8 +/- 1.5 and 15.0 +/- 1.1 solar masses. Combining radial velocity measurements from over 60 years, we show that the system displays apsidal motion at a rate of (2.04^{+.23}_{-.24}) degree/year. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal motion as a function of stellar age and primary mass. In this way, we determine an age of 5.8 +/- 0.6 Myr for HD 152218, which is towards the higher end of, but compatible with, the range of ages of the massive star population of NGC 6231 as determined from isochrone fitting.Comment: Accepted for publication in Astronomy & Astrophysic

    On the origin of macroturbulence in hot stars

    Get PDF
    Since the use of high-resolution high signal-to-noise spectroscopy in the study of massive stars, it became clear that an ad-hoc velocity field at the stellar surface, termed macroturbulence, is needed to bring the observed shape of spectral lines into agreement with observations. We seek a physical explanation of this unknown broadening mechanism. We interprete the missing line broadening in terms of collective pulsational velocity broadening due to non-radial gravity-mode oscillations. We also point out that the rotational velocity can be seriously underestimated whenever the line profiles are fitted assuming a Gaussian macroturbulent velocity rather than an appropriate pulsational velocity expression.Comment: To appear in a special volume of the journal Communications in Asteroseismology dedicated to the Proceedings of the Liege conference; 6 pages, 3 figure

    Periodic mass loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD50064

    Get PDF
    We aim to interpret the photometric and spectroscopic variability of the luminous blue variable supergiant HD\,50064 (V=8.21V=8.21).CoRoT space photometry and follow-up high-resolution spectroscopy, with a time base of 137\,d and 169\,d, respectively, was gathered, analysed and interpreted using standard time series analysis and light curve modelling methods as well as spectral line diagnostics.The space photometry reveals one period of 37\,d, which undergoes a sudden amplitude change with a factor 1.6. The pulsation period is confirmed in the spectroscopy, which additionally reveals metal line radial velocity values differing by 30\sim 30\,km\,s1^{-1} depending on the spectral line and on the epoch. We estimate \teff\sim13\,500\,K, \logg\sim1.5 from the equivalent width of Si lines. The Balmer lines reveal that the star undergoes episodes of changing mass loss on a time scale similar to the changes in the photometric and spectroscopic variability, with an average value of logM˙5\log\dot{\rm M}\simeq-5 (in M_\odot\,yr1^{-1}). We tentatively interpret the 37\,d period as due to a strange mode oscillation.Comment: 4 pages, accepted for publication in Astronomy & Astrophysics Letter
    corecore