11 research outputs found

    Distinct transcriptomic signatures define febrile malaria depending on initial infective states, asymptomatic or uninfected

    Get PDF
    Background: Cumulative malaria parasite exposure in endemic regions often results in the acquisition of partial immunity and asymptomatic infections. There is limited information on how host-parasite interactions mediate the maintenance of chronic symptomless infections that sustain malaria transmission. Methods: Here, we determined the gene expression profiles of the parasite population and the corresponding host peripheral blood mononuclear cells (PBMCs) from 21 children ( Results: Children with asymptomatic infections had a parasite transcriptional profile characterized by a bias toward trophozoite stage (~ 12 h-post invasion) parasites and low parasite levels, while early ring stage parasites were characteristic of febrile malaria. The host response of asymptomatic children was characterized by downregulated transcription of genes associated with inflammatory responses, compared with children with febrile malaria,. Interestingly, the host responses during febrile infections that followed an asymptomatic infection featured stronger inflammatory responses, whereas the febrile host responses from previously uninfected children featured increased humoral immune responses. Conclusions: The priming effect of prior asymptomatic infection may explain the blunted acquisition of antibody responses seen to malaria antigens following natural exposure or vaccination in malaria endemic areas

    Molecular characterization of Plasmodium falciparum PHISTb proteins as potential targets of naturally-acquired immunity against malaria

    No full text
    Study focusing on evaluating PHISTb antigens as targets of naturally acquired immunity against malaria

    Plasma proteomics reveals markers of metabolic stress in HIV infected children with severe acute malnutrition

    No full text
    HIV infection affects up to 30% of children presenting with severe acute malnutrition (SAM) in Africa and is associated with increased mortality. Children with SAM are treated similarly regardless of HIV status, although mechanisms of nutritional recovery in HIV and/or SAM are not well understood. We performed a secondary analysis of a clinical trial and plasma proteomics data among children with complicated SAM in Kenya and Malawi. Compared to children with SAM without HIV (n = 113), HIV-infected children (n = 54) had evidence (false discovery rate (FDR) corrected p < 0.05) of metabolic stress, including enriched pathways related to inflammation and lipid metabolism. Moreover, we observed reduced plasma levels of zinc-α-2-glycoprotein, butyrylcholinesterase, and increased levels of complement C2 resembling findings in metabolic syndrome, diabetes and other non-communicable diseases. HIV was also associated (FDR corrected p < 0.05) with higher plasma levels of inflammatory chemokines. Considering evidence of biomarkers of metabolic stress, it is of potential concern that our current treatment strategy for SAM regardless of HIV status involves a high-fat therapeutic diet. The results of this study suggest a need for clinical trials of therapeutic foods that meet the specific metabolic needs of children with HIV and SAM

    Plasma proteomics reveals markers of metabolic stress in HIV infected children with severe acute malnutrition

    No full text
    Abstract HIV infection affects up to 30% of children presenting with severe acute malnutrition (SAM) in Africa and is associated with increased mortality. Children with SAM are treated similarly regardless of HIV status, although mechanisms of nutritional recovery in HIV and/or SAM are not well understood. We performed a secondary analysis of a clinical trial and plasma proteomics data among children with complicated SAM in Kenya and Malawi. Compared to children with SAM without HIV (n = 113), HIV-infected children (n = 54) had evidence (false discovery rate (FDR) corrected p < 0.05) of metabolic stress, including enriched pathways related to inflammation and lipid metabolism. Moreover, we observed reduced plasma levels of zinc-α-2-glycoprotein, butyrylcholinesterase, and increased levels of complement C2 resembling findings in metabolic syndrome, diabetes and other non-communicable diseases. HIV was also associated (FDR corrected p < 0.05) with higher plasma levels of inflammatory chemokines. Considering evidence of biomarkers of metabolic stress, it is of potential concern that our current treatment strategy for SAM regardless of HIV status involves a high-fat therapeutic diet. The results of this study suggest a need for clinical trials of therapeutic foods that meet the specific metabolic needs of children with HIV and SAM

    The role of albumin and the extracellular matrix on the pathophysiology of oedema formation in severe malnutrition

    No full text
    Background: While fluid flows in a steady state from plasma, through interstitium, and into the lymph compartment, altered fluid distribution and oedema can result from abnormal Starling's forces, increased endothelial permeability or impaired lymphatic drainage. The mechanism of oedema formation, especially the primary role of hypoalbuminaemia, remains controversial. Here, we explored the roles of albumin and albumin-independent mechanisms in oedema formation among children with severe malnutrition (SM). Methods: We performed secondary analysis of data obtained from two independent clinical trials in Malawi and Kenya (NCT02246296 and NCT00934492). We then used an unconventional strategy of comparing children with kwashiorkor and marasmus by matching (discovery cohort, n = 144) and normalising (validation cohort, n = 98, 2 time points) for serum albumin. Untargeted proteomics was used in the discovery cohort to determine plausible albumin-independent mechanisms associated with oedema, which was validated using enzyme-linked immunosorbent assay and multiplex assays in the validation cohort. Findings: We demonstrated that low serum albumin is necessary but not sufficient to develop oedema in SM. We further found that markers of extracellular matrix (ECM) degradation rather than markers of EG degradation distinguished oedematous and non-oedematous children with SM. Interpretation: Our results show that oedema formation has both albumin-dependent and independent mechanisms. ECM integrity appears to have a greater role in oedema formation than EG shedding in SM. Funding: Research Foundation Flanders (FWO), Thrasher Foundation (15122 and 9403), VLIR-UOS-Ghent University Global Minds Fund, Bill & Melinda Gates Foundation (OPP1131320), MRC/DfID/Wellcome Trust Global Health Trials Scheme (MR/M007367/1), Canadian Institutes of Health Research (156307), Wellcome Trust (WT083579MA)

    The role of albumin and the extracellular matrix on the pathophysiology of oedema formation in severe malnutrition

    No full text
    Background While fluid flows in a steady state from plasma, through interstitium, and into the lymph compartment, altered fluid distribution and oedema can result from abnormal Starling's forces, increased endothelial permeability or impaired lymphatic drainage. The mechanism of oedema formation, especially the primary role of hypoalbuminaemia, remains controversial. Here, we explored the roles of albumin and albumin-independent mechanisms in oedema formation among children with severe malnutrition (SM). Methods We performed secondary analysis of data obtained from two independent clinical trials in Malawi and Kenya (NCT02246296 and NCT00934492). We then used an unconventional strategy of comparing children with kwashiorkor and marasmus by matching (discovery cohort, n = 144) and normalising (validation cohort, n = 98, 2 time points) for serum albumin. Untargeted proteomics was used in the discovery cohort to determine plausible albumin-independent mechanisms associated with oedema, which was validated using enzyme-linked immunosorbent assay and multiplex assays in the validation cohort. Findings We demonstrated that low serum albumin is necessary but not sufficient to develop oedema in SM. We further found that markers of extracellular matrix (ECM) degradation rather than markers of EG degradation distinguished oedematous and non-oedematous children with SM. Interpretation Our results show that oedema formation has both albumin-dependent and independent mechanisms. ECM integrity appears to have a greater role in oedema formation than EG shedding in SM. Funding Research Foundation Flanders (FWO), Thrasher Foundation (15122 and 9403), VLIR-UOS-Ghent University Global Minds Fund, Bill & Melinda Gates Foundation (OPP1131320), MRC/DfID/Wellcome Trust Global Health Trials Scheme (MR/M007367/1), Canadian Institutes of Health Research (156307), Wellcome Trust (WT083579MA). Copyright (C) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/

    Systemic inflammation and metabolic disturbances underlie inpatient mortality among ill children with severe malnutrition

    No full text
    Children admitted to hospital with an acute illness and concurrent severe malnutrition [complicated severe malnutrition (CSM)] have a high risk of dying. The biological processes underlying their mortality are poorly understood. In this case-control study nested within a multicenter randomized controlled trial among children with CSM in Kenya and Malawi, we found that blood metabolomic and proteomic profiles robustly differentiated children who died (n = 92) from those who survived (n = 92). Fatalities were characterized by increased energetic substrates (tricarboxylic acid cycle metabolites), microbial metabolites (e.g., propionate and isobutyrate), acute phase proteins (e.g., calprotectin and C-reactive protein), and inflammatory markers (e.g., interleukin-8 and tumor necrosis factor–α). These perturbations indicated disruptions in mitochondria-related bioenergetic pathways and sepsis-like responses. This study identified specific biomolecular disturbances associated with CSM mortality, revealing that systemic inflammation and bioenergetic deficits are targetable pathophysiological processes for improving survival of this vulnerable population

    Distinct transcriptomic signatures define febrile malaria depending on initial infective states, asymptomatic or uninfected

    Get PDF
    Abstract Background Cumulative malaria parasite exposure in endemic regions often results in the acquisition of partial immunity and asymptomatic infections. There is limited information on how host-parasite interactions mediate the maintenance of chronic symptomless infections that sustain malaria transmission. Methods Here, we determined the gene expression profiles of the parasite population and the corresponding host peripheral blood mononuclear cells (PBMCs) from 21 children (< 15 years). We compared children who were defined as uninfected, asymptomatic and those with febrile malaria. Results Children with asymptomatic infections had a parasite transcriptional profile characterized by a bias toward trophozoite stage (~ 12 h-post invasion) parasites and low parasite levels, while early ring stage parasites were characteristic of febrile malaria. The host response of asymptomatic children was characterized by downregulated transcription of genes associated with inflammatory responses, compared with children with febrile malaria,. Interestingly, the host responses during febrile infections that followed an asymptomatic infection featured stronger inflammatory responses, whereas the febrile host responses from previously uninfected children featured increased humoral immune responses. Conclusions The priming effect of prior asymptomatic infection may explain the blunted acquisition of antibody responses seen to malaria antigens following natural exposure or vaccination in malaria endemic areas

    Pooled testing conserves SARS-CoV-2 laboratory resources and improves test turn-around time: Experience on the Kenyan Coast

    No full text
    Background: International recommendations for the control of the coronavirus disease 2019 (COVID-19) pandemic emphasize the central role of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent, at scale. The availability of testing reagents, laboratory equipment and qualified staff are important bottlenecks to achieving this. Elsewhere, pooled testing (i.e. combining multiple samples in the same reaction) has been suggested to increase testing capacities in the pandemic period. Methods: We discuss our experience with SARS-CoV-2 pooled testing using real-time reverse transcription polymerase chain reaction (RT-PCR) on the Kenyan Coast. Results: In mid-May, 2020, our RT-PCR testing capacity for SARS-CoV-2 was improved by ~100% as a result of adoption of a six-sample pooled testing strategy. This was accompanied with a concomitant saving of ~50% of SARS-CoV-2 laboratory test kits at both the RNA extraction and RT-PCR stages. However, pooled testing came with a slight decline of test sensitivity. The RT-PCR cycle threshold value (ΔCt) was ~1.59 higher for samples tested in pools compared to samples tested singly. Conclusions: Pooled testing is a useful strategy to increase SARS-CoV-2 laboratory testing capacity especially in low-income settings

    The Childhood Acute Illness and Nutrition (CHAIN) network nested case-cohort study protocol: a multi-omics approach to understanding mortality among children in sub-Saharan Africa and South Asia.

    Get PDF
    Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network ( www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach. Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children. Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases. Trial registration NCT03208725
    corecore