14,757 research outputs found

    Conformal anomaly and the vector coupling in dense matter

    Full text link
    We construct an effective chiral Lagrangian for hadrons implemented by the conformal invariance and discuss the properties of nuclear matter at high density. The model is formulated based on two alternative assignment, "naive" and mirror, of chirality to the nucleons. It is shown that taking the dilaton limit, in which the mended symmetry of Weinberg is manifest, the vector-meson Yukawa coupling becomes suppressed and the symmetry energy becomes softer as one approaches the chiral phase transition. This leads to softer equations of state (EoS) and could accommodate the EoS without any exotica consistent with the recent measurement of a 1.97±0.04 M⊙1.97 \pm 0.04\,M_\odot neutron star.Comment: v2:10 pages, 2 figures, typos corrected, a rough estimate of m0 adde

    Helices at Interfaces

    Full text link
    Helically coiled filaments are a frequent motif in nature. In situations commonly encountered in experiments coiled helices are squeezed flat onto two dimensional surfaces. Under such 2-D confinement helices form "squeelices" - peculiar squeezed conformations often resembling looped waves, spirals or circles. Using theory and Monte-Carlo simulations we illuminate here the mechanics and the unusual statistical mechanics of confined helices and show that their fluctuations can be understood in terms of moving and interacting discrete particle-like entities - the "twist-kinks". We show that confined filaments can thermally switch between discrete topological twist quantized states, with some of the states exhibiting dramatically enhanced circularization probability while others displaying surprising hyperflexibility

    Analysis of Models for Decentralized and Collaborative AI on Blockchain

    Full text link
    Machine learning has recently enabled large advances in artificial intelligence, but these results can be highly centralized. The large datasets required are generally proprietary; predictions are often sold on a per-query basis; and published models can quickly become out of date without effort to acquire more data and maintain them. Published proposals to provide models and data for free for certain tasks include Microsoft Research's Decentralized and Collaborative AI on Blockchain. The framework allows participants to collaboratively build a dataset and use smart contracts to share a continuously updated model on a public blockchain. The initial proposal gave an overview of the framework omitting many details of the models used and the incentive mechanisms in real world scenarios. In this work, we evaluate the use of several models and configurations in order to propose best practices when using the Self-Assessment incentive mechanism so that models can remain accurate and well-intended participants that submit correct data have the chance to profit. We have analyzed simulations for each of three models: Perceptron, Na\"ive Bayes, and a Nearest Centroid Classifier, with three different datasets: predicting a sport with user activity from Endomondo, sentiment analysis on movie reviews from IMDB, and determining if a news article is fake. We compare several factors for each dataset when models are hosted in smart contracts on a public blockchain: their accuracy over time, balances of a good and bad user, and transaction costs (or gas) for deploying, updating, collecting refunds, and collecting rewards. A free and open source implementation for the Ethereum blockchain and simulations written in Python is provided at https://github.com/microsoft/0xDeCA10B. This version has updated gas costs using newer optimizations written after the original publication.Comment: Accepted to ICBC 202

    A new Al-Zr-Ti master alloy for ultrasonic grain refinement of wrought and foundry aluminum alloys

    Get PDF
    A new grain refiner master alloy based on the Al-Zr-Ti system was prepared by salt assisted synthesis. 90% of Al3Zr particles in the master alloy were ranged between 1 and 13 ÎŒm. 80% reduction of grain size was observed with the addition of 0.2wt% Zr equivalent master alloy combined with ultrasonic treatment in an Al alloy. The new master alloy demonstrated 30% improvement in grain refinement efficiency compared to the one prepared by a conventional alloy route.The authors wish to acknowledge financial support from the ExoMet Project, which is co-funded by the European Commission in the 7th Framework Programme (contract FP7-NMP3-LA-2012-280421), by the European Space Agency and by the individual partner organisations

    Ultrasound- guided fine needle aspiration cytology and cell block in the diagnosis of focal liver lesions at Khartoum Hospital, Sudan

    Get PDF
    Background: The appropriate clinical management of various hepatic lesions depends on accurate diagnosis. Fine needle aspiration and cell block have gained popularity because they are convenient, minimally invasive, quick and have good performance profiles.Objective: To investigate the cytomorphological features of distinctive non-neoplastic and neoplastic lesions of the liver and to evaluate the sensitivity, specificity and diagnostic accuracy of ultrasound- guided (USG) fine needle aspiration cytology (FNAC) and cell block in the diagnosis ofliver diseases at Khartoum Teaching Hospital.Method: A cross-sectional study was conducted at Khartoum Teaching Hospital, Sudan during the period of November 2008 to October 2011. One hundred and five cytological materials were collected from patients with focal liver lesions who referred after initial clinical and radiologicalassessment for ultrasound–guided fine needle aspiration cytology (USG -FNAC).Results: The age of the patients ranged from 5- 60 years and 64 (61%) of these patients were males. Out of 105 investigated samples 76 (72.4%) and 41(39.0%) were malignant by cytology and cell block respectively. Out of these 105 samples, 71 were investigated by both cytology and cell blocks and were included in the final analyses of the FNAC in comparison to cell block. The sensitivity, specificity, positive predictive value and negative predictive value of the cytology were 100% (93.0 – 100%), 63.3% (45.2 – 79.0%), 78.8% (66.2 – 88.3%) and 0 (0 – 14.6%), respectively.Conclusion: Thus, USG -FNAC is a sensitive but not specific method in differentiating the benign and malignant focal liver lesions. Differentiation between primary liver malignant lesions and metastatic lesion needs adjunct techniqueKey words: neoplastic lesion, non-neoplastic lesio

    Macroscopic effects of the spectral structure in turbulent flows

    Full text link
    Two aspects of turbulent flows have been the subject of extensive, split research efforts: macroscopic properties, such as the frictional drag experienced by a flow past a wall, and the turbulent spectrum. The turbulent spectrum may be said to represent the fabric of a turbulent state; in practice it is a power law of exponent \alpha (the "spectral exponent") that gives the revolving velocity of a turbulent fluctuation (or "eddy") of size s as a function of s. The link, if any, between macroscopic properties and the turbulent spectrum remains missing. Might it be found by contrasting the frictional drag in flows with differing types of spectra? Here we perform unprecedented measurements of the frictional drag in soap-film flows, where the spectral exponent \alpha = 3 and compare the results with the frictional drag in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of the Reynolds number Re (a measure of the strength of the turbulence), we find that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may be predicted from the attendant value of \alpha by using a new theory, in which the frictional drag is explicitly linked to the turbulent spectrum. Our work indicates that in turbulence, as in continuous phase transitions, macroscopic properties are governed by the spectral structure of the fluctuations.Comment: 6 pages, 3 figure
    • 

    corecore