24 research outputs found

    Entanglement entropy in long-range harmonic oscillators

    Full text link
    We study the Von Neumann and R\'enyi entanglement entropy of long-range harmonic oscillators (LRHO) by both theoretical and numerical means. We show that the entanglement entropy in massless harmonic oscillators increases logarithmically with the sub-system size as S=ceff3loglS=\frac{c_{eff}}{3}\log l. Although the entanglement entropy of LRHO's shares some similarities with the entanglement entropy at conformal critical points we show that the R\'enyi entanglement entropy presents some deviations from the expected conformal behavior. In the massive case we demonstrate that the behavior of the entanglement entropy with respect to the correlation length is also logarithmic as the short range case.Comment: Published version, 5 figure

    Contour lines of the discrete scale invariant rough surfaces

    Full text link
    We study the fractal properties of the 2d discrete scale invariant (DSI) rough surfaces. The contour lines of these rough surfaces show clear DSI. In the appropriate limit the DSI surfaces converge to the scale invariant rough surfaces. The fractal properties of the 2d DSI rough surfaces apart from possessing the discrete scale invariance property follow the properties of the contour lines of the corresponding scale invariant rough surfaces. We check this hypothesis by calculating numerous fractal exponents of the contour lines by using numerical calculations. Apart from calculating the known scaling exponents some other new fractal exponents are also calculated.Comment: 9 Pages, 12 figure

    Entanglement Dynamics after a Quench in Ising Field Theory: A Branch Point Twist Field Approach

    Get PDF
    We extend the branch point twist field approach for the calculation of entanglement entropies to time-dependent problems in 1+1-dimensional massive quantum field theories. We focus on the simplest example: a mass quench in the Ising field theory from initial mass m0 to final mass m. The main analytical results are obtained from a perturbative expansion of the twist field one-point function in the post-quench quasi-particle basis. The expected linear growth of the Rényi entropies at large times mt ≫ 1 emerges from a perturbative calculation at second order. We also show that the Rényi and von Neumann entropies, in infinite volume, contain subleading oscillatory contributions of frequency 2m and amplitude proportional to (mt)−3/2. The oscillatory terms are correctly predicted by an alternative perturbation series, in the pre-quench quasi-particle basis, which we also discuss. A comparison to lattice numerical calculations carried out on an Ising chain in the scaling limit shows very good agreement with the quantum field theory predictions. We also find evidence of clustering of twist field correlators which implies that the entanglement entropies are proportional to the number of subsystem boundary points
    corecore