17 research outputs found

    Age-related cognitive and motor decline in a mouse model of CDKL5 deficiency disorder is associated with increased neuronal senescence and death

    Get PDF
    open20noThis work was supported by grants to E.C. and M.G. from Telethon (GGP19045) and from the Italian parent Association “CDKL5 insieme verso la cura”, and to M.G. from the Association “l’Albero di Greta”, from the International Foundation for CDKL5 Research (IFCR 2019), from the CDKL5 Program of Excellence - LouLou Fundation (CDKL5-17-106-01) and from the Association Française du Syndrome de Rett (ASFR 2017).CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. Children affected by CDD display a clinical phenotype characterized by early-onset epilepsy, intellectual disability, motor impairment, and autistic-like features. Although the clinical aspects associated with CDKL5 mutations are well described in children, adults with CDD are still under-characterized. Similarly, most animal research has been carried out on young adult Cdkl5 knockout (KO) mice only. Since age represents a risk factor for the worsening of symptoms in many neurodevelopmental disorders, understanding age differences in the development of behavioral deficits is crucial in order to optimize the impact of therapeutic interventions. Here, we compared young adult Cdkl5 KO mice with middle-aged Cdkl5 KO mice, at a behavioral, neuroanatomical, and molecular level. We found an age-dependent decline in motor, cognitive, and social behaviors in Cdkl5 KO mice, as well as in breathing and sleep patterns. The behavioral decline in older Cdkl5 KO mice was not associated with a worsening of neuroanatomical alterations, such as decreased dendritic arborization or spine density, but was paralleled by decreased neuronal survival in different brain regions such as the hippocampus, cortex, and basal ganglia. Interestingly, we found increased β-galactosidase activity and DNA repair protein levels, γH2AX and XRCC5, in the brains of older Cdkl5 KO mice, which suggests that an absence of Cdkl5 accelerates neuronal senescence/death by triggering irreparable DNA damage. In summary, this work provides evidence that CDKL5 may play a fundamental role in neuronal survival during brain aging and suggests a possible worsening with age of the clinical picture in CDD patients.openGennaccaro L.; Fuchs C.; Loi M.; Pizzo R.; Alvente S.; Berteotti C.; Lupori L.; Sagona G.; Galvani G.; Gurgone A.; Raspanti A.; Medici G.; Tassinari M.; Trazzi S.; Ren E.; Rimondini R.; Pizzorusso T.; Zoccoli G.; Giustetto M.; Ciani E.Gennaccaro L.; Fuchs C.; Loi M.; Pizzo R.; Alvente S.; Berteotti C.; Lupori L.; Sagona G.; Galvani G.; Gurgone A.; Raspanti A.; Medici G.; Tassinari M.; Trazzi S.; Ren E.; Rimondini R.; Pizzorusso T.; Zoccoli G.; Giustetto M.; Ciani E

    Effectiveness of an online curriculum for medical students on genetics, genetic testing and counseling

    Get PDF
    Background: It is increasingly important that physicians have a thorough understanding of the basic science of human genetics and the ethical, legal and social implications (ELSI) associated with genetic testing and counseling. Methods: The authors developed a series of web-based courses for medical students on these topics. The course modules are interactive, emphasize clinical case studies, and can easily be incorporated into existing medical school curricula. Results: Results of a ‘real world’ effectiveness trial indicate that the courses have a statistically significant effect on knowledge, attitude, intended behavior and self-efficacy related to genetic testing (p<0.001; N varies between 163 and 596 for each course). Conclusions: The results indicate that this curriculum is an effective tool for educating medical students on the ELSI associated with genetic testing and for promoting positive changes in students' confidence, counseling attitudes and behaviors

    Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue

    Get PDF
    BackgroundIn light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar¿pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated. We thus focused our attention on titanium dioxide (TiO2) nanoparticles, the most diffuse nanomaterial in polluted environments and one generally considered inert for the human body.MethodsWe conducted functional studies on isolated adult rat cardiomyocytes exposed acutely in vitro to TiO2 and on healthy rats administered a single dose of 2 mg/Kg TiO2 NPs via the trachea. Transmission electron microscopy was used to verify the actual presence of TiO2 nanoparticles within cardiac tissue, toxicological assays were used to assess lipid peroxidation and DNA tissue damage, and an in silico method was used to model the effect on action potential.ResultsVentricular myocytes exposed in vitro to TiO2 had significantly reduced action potential duration, impairment of sarcomere shortening and decreased stability of resting membrane potential. In vivo, a single intra-tracheal administration of saline solution containing TiO2 nanoparticles increased cardiac conduction velocity and tissue excitability, resulting in an enhanced propensity for inducible arrhythmias. Computational modeling of ventricular action potential indicated that a membrane leakage could account for the nanoparticle-induced effects measured on real cardiomyocytes.ConclusionsAcute exposure to TiO2 nanoparticles acutely alters cardiac excitability and increases the likelihood of arrhythmic events

    Increased DNA Damage and Apoptosis in CDKL5-Deficient Neurons

    No full text
    Mutations in the CDKL5 gene, which encodes a serine/threonine kinase, causes a rare encephalopathy, characterized by early-onset epilepsy and severe intellectual disability, named CDKL5 deficiency disorder (CDD). In vitro and in vivo studies in mouse models of Cdkl5 deficiency have highlighted the role of CDKL5 in brain development and, in particular, in the morphogenesis and synaptic connectivity of hippocampal and cortical neurons. Interestingly, Cdkl5 deficiency in mice increases vulnerability to excitotoxic stress in hippocampal neurons. However, the mechanism by which CDKL5 controls neuronal survival is far from being understood. To investigate further the function of CDKL5 and dissect the molecular mechanisms underlying neuronal survival, we generated a human neuronal model of CDKL5 deficiency, using CRISPR/Cas9-mediated genome editing. We demonstrated that CDKL5 deletion in human neuroblastoma SH-SY5Y cells not only impairs neuronal maturation but also reduces cell proliferation and survival, with alterations in the AKT and ERK signaling pathways and an increase in the proapoptotic BAX protein and in DNA damage-associated biomarkers (i.e., γH2AX, RAD50, and PARP1). Furthermore, CDKL5-deficient cells were hypersensitive to DNA damage-associated stress, accumulated more DNA damage foci (γH2AX positive) and were more prone to cell death than the controls. Importantly, increased kainic acid-induced cell death of hippocampal neurons of Cdkl5 KO mice correlated with an increased γH2AX immunostaining. The results suggest a previously unknown role for CDKL5 in DNA damage response that could underlie the pro-survival function of CDKL5

    CDKL5 deficiency predisposes neurons to cell death through the deregulation of SMAD3 signaling (vol 29, pg 658, 2019)

    No full text
    CDKL5 deficiency disorder (CDD) is a rare encephalopathy characterized by early onset epilepsy and severe intellectual disability. CDD is caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene, a member of a highly conserved family of serine-threonine kinases. Only a few physiological substrates of CDKL5 are currently known, which hampers the discovery of therapeutic strategies for CDD. Here, we show that SMAD3, a primary mediator of TGF-\u3b2 action, is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes SMAD3 protein stability. Importantly, we found that restoration of the SMAD3 signaling through TGF-\u3b21 treatment normalized defective neuronal survival and maturation in Cdkl5 knockout (KO) neurons. Moreover, we demonstrate that Cdkl5 KO neurons are more vulnerable to neurotoxic/excitotoxic stimuli. In vivo treatment with TGF-\u3b21 prevents increased NMDA-induced cell death in hippocampal neurons from Cdkl5 KO mice, suggesting an involvement of the SMAD3 signaling deregulation in the neuronal susceptibility to excitotoxic injury of Cdkl5 KO mice. Our finding reveals a new function for CDKL5 in maintaining neuronal survival that could have important implications for susceptibility to neurodegeneration in patients with CDD

    Pharmacotherapy with sertraline rescues brain development and behavior in a mouse model of CDKL5 deficiency disorder

    No full text
    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a severe neurodevelopmental disorder, CDKL5 deficiency disorder (CDD). CDKL5 is fundamental for correct brain development and function, but the molecular mechanisms underlying aberrant neurologic dysfunction in CDD are incompletely understood. Here we show a dysregulation of hippocampal and cortical serotonergic (5-HT) receptor expression in heterozygous Cdkl5 knockout (KO) female mice, suggesting that impaired 5-HT neurotransmission contributes to CDD. We demonstrate that targeting impaired 5-HT signaling via the selective serotonin reuptake inhibitor (SSRI) sertraline rescues CDD-related neurodevelopmental and behavioral defects in heterozygous Cdkl5 KO female mice. In particular, chronic treatment with sertraline normalized locomotion, stereotypic and autistic-like features, and spatial memory in Cdkl5 KO mice. These positive behavioral effects were accompanied by restored neuronal survival, dendritic development and synaptic connectivity. At a molecular level, sertraline increased brain-derived neurotrophic factor (BDNF) expression and restored abnormal phosphorylation levels of tyrosine kinase B (TrkB) and its downstream target the extracellular signal-regulated kinase (ERK1/2). Since sertraline is an FDA-approved drug with an extensive safety and tolerability data package, even for children, our findings suggest that sertraline may improve neurodevelopment in children with CDD
    corecore