1,248 research outputs found

    Optical alignment and polarization conversion of neutral exciton spin in individual InAs/GaAs quantum dots

    Full text link
    We investigate exciton spin memory in individual InAs/GaAs self-assembled quantum dots via optical alignment and conversion of exciton polarization in a magnetic field. Quasiresonant phonon-assisted excitation is successfully employed to define the initial spin polarization of neutral excitons. The conservation of the linear polarization generated along the bright exciton eigenaxes of up to 90% and the conversion from circular- to linear polarization of up to 47% both demonstrate a very long spin relaxation time with respect to the radiative lifetime. Results are quantitatively compared with a model of pseudo-spin 1/2 including heavy-to-light hole mixing.Comment: 5 pages, 3 figure

    Optical manipulation of a single Mn spin in a CdTe-based quantum dot

    Full text link
    A system of two coupled CdTe quantum dots, one of them containing a single Mn ion, was studied in continuous wave and modulated photoluminescence, photoluminescence excitation, and photon correlation experiments. Optical writing of information in the spin state of the Mn ion has been demonstrated, using orientation of the Mn spin by spin-polarized carriers transferred from the neighbor quantum dot. Mn spin orientation time values from 20 ns to 100 ns were measured, depending on the excitation power. Storage time of the information in the Mn spin was found to be enhanced by application of a static magnetic field of 1 T, reaching hundreds of microseconds in the dark. Simple rate equation models were found to describe correctly static and dynamical properties of the system.Comment: 4 pages, 3 figure

    Frechet Differentiable Norm and Locally Uniformly Rotund Renormings

    Get PDF
    In this paper, we study briefly the role played by the locally uniformly rotund (LUR) norm and Frechet differentiability of a norm on the Banach space theory. Our old outstanding open Problem 3.8 mentioned below is the main object of this paper. We study nearly about it and find some additional assumptions on the space attached with this problem to obtain its positive or negative answer. We investigate different results related to these norms and their duals on different settings. In particular, we introduce reflexive spaces, Banach spaces with unconditional basis, weakly locally uniformly rotund (WLUR) norm, Almost locally uniformly rotund (ALUR) norm, strongly exposed point, sub-differentiability and ϵ-sub-differentiability, σ–slicely continuity, weakly compactly generated (WCG) Banach spaces with ck –smooth norms, Symulian’s Theorem, and some technical lemmas

    miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment

    Get PDF
    miR393 molecules are believed to regulate the expression of the auxin receptors of the TAAR clade. Considering the central role of auxin in the induction of somatic embryogenesis (SE) in plant explants cultured in vitro, the involvement of miR393 in the embryogenic transition of somatic cells has been hypothesised. To verify this assumption, the reporter, overexpressor and mutant lines in genes encoded MIR393 and TIR1/AFB proteins of the F-box family were analysed during SE in Arabidopsis. Expression profiling of MIR393a and MIR393b, mature miR393 and the target genes (TIR1, AFB1, AFB2, AFB3) were investigated in explants undergoing SE. In addition, the embryogenic potential of various genotypes with a modified activity of the MIR393 and TIR1/AFB targets was evaluated. The distinct increase in the accumulation of miR393 that was coupled with a notable down-regulation of TIR1 and AFB2 targets was observed at the early phase of SE induction. Relevant to this observation, the GUS/GFP monitored expression of MIR393, TIR1 and AFB2 transcripts was localised in explant tissue undergoing SE induction. The results suggest the miR393-mediated regulation of TIR1 and AFB2 during embryogenic transition induced in Arabidopsis and a modification of the explant sensitivity to auxin treatment is proposed as underlying this regulatory pathway

    Origin of the anomalous magnetic circular dichroism spectral shape in ferromagnetic (Ga,Mn)As: Impurity bands inside the band gap

    Full text link
    The electronic structure of a prototype dilute magnetic semiconductor (DMS), Ga1-xMnxAs, is studied by magnetic circular dichroism (MCD) spectroscopy. We prove that the optical transitions originated from impurity bands cause the strong positive MCD background. The MCD signal due to the E0 transition from the valence band to the conduction band is negative indicating that the p-d exchange interactions between the p-carriers and d-spin is antiferromagnetic. The negative E0 MCD signal also indicates that the hole-doping of the valence band is not so large as previously assumed. The impurity bands seem to play important roles for the ferromagnetism of Ga1-xMnxAs.Comment: 13 pages, 3 figure

    Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants

    Get PDF
    Somatic embryogenesis (SE) that is induced in plant explants in response to auxin treatment is closely associated with an extensive genetic reprogramming of the cell transcriptome. The significant modulation of the gene transcription profiles during SE induction results from the epigenetic factors that fine-tune the gene expression towards embryogenic development. Among these factors, microRNA molecules (miRNAs) contribute to the post-transcriptional regulation of gene expression. In the past few years, several miRNAs that regulate the SE-involved transcription factors (TFs) have been identified, and most of them were involved in the auxin-related processes, including auxin metabolism and signaling. In addition to miRNAs, chemical modifications of DNA and chromatin, in particular the methylation of DNA and histones and histone acetylation, have been shown to shape the SE transcriptomes. In response to auxin, these epigenetic modifications regulate the chromatin structure, and hence essentially contribute to the control of gene expression during SE induction. In this paper, we describe the current state of knowledge with regard to the SE epigenome. The complex interactions within and between the epigenetic factors, the key SE TFs that have been revealed, and the relationships between the SE epigenome and auxin-related processes such as auxin perception, metabolism, and signaling are highlighted

    Current Perspectives on the Auxin-Mediated Genetic Network that Controls the Induction of Somatic Embryogenesis in Plants

    Get PDF
    Auxin contributes to almost every aspect of plant development and metabolism as well as the transport and signalling of auxin-shaped plant growth and morphogenesis in response to endo- and exogenous signals including stress conditions. Consistently with the common belief that auxin is a central trigger of developmental changes in plants, the auxin treatment of explants was reported to be an indispensable inducer of somatic embryogenesis (SE) in a large number of plant species. Treating in vitro-cultured tissue with auxins (primarily 2,4-dichlorophenoxyacetic acid, which is a synthetic auxin-like plant growth regulator) results in the extensive reprogramming of the somatic cell transcriptome, which involves the modulation of numerous SE-associated transcription factor genes (TFs). A number of SE-modulated TFs that control auxin metabolism and signalling have been identified, and conversely, the regulators of the auxin-signalling pathway seem to control the SE-involved TFs. In turn, the di erent expression of the genes encoding the core components of the auxin-signalling pathway, the AUXIN/INDOLE-3-ACETIC ACIDs (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs), was demonstrated to accompany SE induction. Thus, the extensive crosstalk between the hormones, in particular, auxin and the TFs, was revealed to play a central role in the SE-regulatory network. Accordingly, LEAFY COTYLEDON (LEC1 and LEC2), BABY BOOM (BBM), AGAMOUS-LIKE15 (AGL15) and WUSCHEL (WUS) were found to constitute the central part of the complex regulatory network that directs the somatic plant cell towards embryogenic development in response to auxin. The revealing picture shows a high degree of complexity of the regulatory relationships between the TFs of the SE-regulatory network, which involve direct and indirect interactions and regulatory feedback loops. This review examines the recent advances in studies on the auxin-controlled genetic network, which is involved in the mechanism of SE induction and focuses on the complex regulatory relationships between the down- and up-stream targets of the SE-regulatory TFs. In particular, the outcomes from investigations on Arabidopsis, which became a model plant in research on genetic control of SE, are presented

    Microphotoluminescence study of disorder in ferromagnetic (Cd,Mn)Te quantum well

    Full text link
    Microphotoluminescence mapping experiments were performed on a modulation doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The zero field splitting that reveals the presence of a spontaneous magnetization in the low-temperature phase, is measured locally; its fluctuations are compared to those of the spin content and of the carrier density, also measured spectroscopically in the same run. We show that the fluctuations of the carrier density are the main mechanism responsible for the fluctuations of the spontaneous magnetization in the ferromagnetic phase, while those of the Mn spin density have no detectable effect at this scale of observation.Comment: 4 pages, 3 figure

    p-Type doping of II-VI heterostructures from surface states: application to ferromagnetic Cd1x_{1-x}Mnx_xTe quantum wells

    Full text link
    We present a study of p-type doping of CdTe and Cd1x_{1-x}Mnx_xTe quantum wells from surface states. We show that this method is as efficient as usual modulation doping with nitrogen acceptors, and leads to hole densities exceeding 2×10112 \times 10^{11} cm2^{-2}. Surface doping was successfully applied to obtain carrier-induced ferromagnetism in a Cd1x_{1-x}Mnx_xTe quantum well. The observed temperature dependence of photoluminescence spectra, and the critical temperature, correspond well to those previously reported for ferromagnetic quantum wells doped with nitrogen.Comment: 4 figure

    Correlated Photon Emission from a Single II-VI Quantum Dot

    Full text link
    We report correlation and cross-correlation measurements of photons emitted under continuous wave excitation by a single II-VI quantum dot (QD) grown by molecular-beam epitaxy. A standard technique of microphotoluminescence combined with an ultrafast photon correlation set-up allowed us to see an antibunching effect on photons emitted by excitons recombining in a single CdTe/ZnTe QD, as well as cross-correlation within the biexciton (X2X_{2})-exciton (XX) radiative cascade from the same dot. Fast microchannel plate photomultipliers and a time-correlated single photon module gave us an overall temporal resolution of 140 ps better than the typical exciton lifetime in II-VI QDs of about 250ps.Comment: 4 pages, 3 figures, to appear in Appl. Phys. Let
    corecore