32 research outputs found

    Effect of 2-(4-fluorophenylamino)-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole on the molecular organisation and structural properties of the DPPC lipid multibilayers

    Get PDF
    AbstractInteractions and complex formation between lipids and biologically active compounds are crucial for better understanding of molecular mechanisms occurring in living cells. In this paper a molecular organisation and complex formation of 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole (FABT) in DPPC multibilayers are reported. The simplified pseudo binary phase diagram of this system was created based on the X-ray diffraction study and fourier transform infrared spectroscopic data. The detailed analysis of the refraction effect indicates a much higher concentration of FABT in the polar zones during phase transition. Both the lipid and the complex ripple after cooling. It was found that FABT occupied not only the hydrophilic zones of the lipid membranes but also partly occupied the central part of the non polar zone. The infrared spectroscopy study reveals that FABT strongly interact with hydrophilic (especially PO2−) and hydrophobic (especially “kink” vibrations of CH2 group). The interactions of FABT molecules with these groups are responsible for changes of lipid multibilayers observed in X-ray diffraction study

    Spectroscopic Studies of Intramolecular Proton Transfer in 2-(4-Fluorophenylamino)-5-(2,4-Dihydroxybenzeno)-1,3,4-Thiadiazole

    Get PDF
    Spectroscopic studies of the biologically active compound 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole (FABT), have been performed. Absorption studies in the UV-Vis region for FABT in polar solvents, like water or ethanol, exhibit the domination of the enol form over its keto counterpart, with a broad absorption band centered around 340 nm. In non-polar solvents such as n-heptane or heavier alkanes the 340 nm absorption band disappears and an increase of the band related to the keto form (approximately 270 nm) is observed. Fluorescence spectra (with 270 nm and 340 nm excitation energies used) show a similar dependence: for FABT in 2-propanol a peak at about 400 nm dominates over that at 330 nm while in n-heptane this relation is reversed. The solvent dependent equilibrium between the keto and enol forms is further confirmed by FTIR and Raman spectroscopies. As can be expected, this equilibrium also shows some temperature dependences. We note that the changes between the two tautomeric forms of FABT are not related to the permanent dipole moment of the solvent but rather to its dipole polarizability

    Effect of cholesterol and ergosterol on the antibiotic amphotericin B interactions with dipalmitoylphosphatidylcholine monolayers: X-ray reflectivity study

    Get PDF
    Amphotericin B is a Streptomyces nodosus metabolite and one of the oldest polyene antibiotics used in the treatment of invasive systemic fungal infections. Despite its over 50-year existence in clinical practice and the recognition of amphotericin B as the gold standard in the treatment of serious systemic mycosis, it still remains one of the most toxic pharmaceuticals. Understanding of the processes at the molecular levels and the interactions between amphotericin B with lipid membranes containing sterols should elucidate the mechanisms of the action and toxicity of this widely used antibiotic. In this work, we use X-ray reflectivity to study the structural changes on a molecular scale after amphotericin B incorporation. These changes are accompanied by an increase in monolayer surface pressure which is more pronounced for ergosterol — rather than cholesterol-rich membranes. The data indicate that this difference is not due to the higher affinity of amphotericin B towards ergosterol-containing membranes but is rather due to a ~ 3 Angstrom corrugation of the monolayer. Furthermore, the total quantity of amphotericin B incorporated into lipid monolayers containing cholesterol and ergosterol is the same

    Mikroskopia konfokalna SIL

    No full text
    Przedstawiamy układ mikroskopu konfokalnego wyposażonego w szklaną soczewkę imersyjną do wysokorozdzielczych pomiarów spektroskopowych. Zaprezentujemy rezultat wykorzystania mikroskopu do pomiarów map fluorescencji pojedynczej monowarstwy Langmuira-Blodgetta zawierającej kompleksy fotosyntetyczne oraz nanocząstki srebra. Obecność nanocząstek srebra istotnie wpływa na wydajność fluorescencji chromoforów w badanych warstwach
    corecore