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Amphotericin B is a Streptomyces nodosus metabolite and one of the oldest polyene antibiotics used in the
treatment of invasive systemic fungal infections. Despite its over 50-year existence in clinical practice and the
recognition of amphotericin B as the gold standard in the treatment of serious systemic mycosis, it still remains
one of the most toxic pharmaceuticals. Understanding of the processes at the molecular levels and the
interactions between amphotericin B with lipid membranes containing sterols should elucidate the mechanisms
of the action and toxicity of this widely used antibiotic. In this work, we use X-ray reflectivity to study the
Amphotericin B structural changes on a molecular scale after amphotericin B incorporation. These changes are accompanied by an
Lipid monolayer increase in monolayer surface pressure which is more pronounced for ergosterol — rather than cholesterol-rich
Sterol membranes. The data indicate that this difference is not due to the higher affinity of amphotericin B towards
X-ray diffraction ergosterol-containing membranes but is rather due to a ~3 Angstrom corrugation of the monolayer. Furthermore,
the total quantity of amphotericin B incorporated into lipid monolayers containing cholesterol and ergosterol is
the same.
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1. Introduction

Amphotericin B (AmB) is one of the most important drugs in the
medical treatment of internal fungal infections [1,2]. The antifungal
properties of AmB are related to its relatively strong interaction with
ergosterol, which is the main sterol of fungal membrane, rather than
with cholesterol, which occurs in mammalian cells [3-6]. Although
AmB has been used clinically for a long time, its molecular organization
in both biological and artificial systems as well as its mechanism of
action are still of great scientific importance [3,7-15]. In this work, we
discuss the effect of sterols on amphotericin B incorporation into
phospholipid (DPPC) monolayers.
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Surface pressure changes in monolayers in Langmuir isotherms are
usually proportional to the quantity of the substances incorporated
[16-19]. This simplification can be applied to many systems; however,
as we show here, this is not true for AmB incorporation into lipid mono-
layers containing cholesterol or ergosterol. It can be found that AmB ad-
sorbs into the DPPC-ergosterol monolayer more strongly than into the
one containing cholesterol [11,16,20-22]. Using X-ray reflectivity
(XRR), we show that the amount of AmB incorporated into DPPC-
ergosterol and DPPC-cholesterol monolayers is the same. To explain
this phenomenon and at the same time the differences in surface pres-
sure for both systems, we propose an extension to the generally accept-
ed superlattice model of the lipid—cholesterol monolayer [22-24]. The
superlattice surface can differ not only in the in-plane arrangement of
molecules but also in the out-of-plane corrugation, as found for simple
binary systems [25]. In the case of such a corrugation for DPPC-
cholesterol, one would expect an increase in monolayer thickness and
roughness manifested by a broadening of the X-ray scattering length
density (SLD) profile [26,27]. The X-ray SLD profiles determined from
X-ray reflectivity data also provide information about AmB orientation
and AmB mycosamine group location in the monolayer.
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2. Material and methods

The investigated monolayers were prepared from dipalmitoyl-
phosphatidylcholine (DPPC) with purity >99%, purchased from Avanti
Polar Lipids Inc.; ergosterol (>95%), amphotericin B (~95%), cholesterol
(99%) and all solvents used were purchased from Sigma-Aldrich. The
N-iodoacetylamphotericin B (AmB-I) was synthesized in our group,
see Fig. 1. The details of the synthesis and purification are described
in reference [28]. The iodoacetate group is bonded to the AmB mole-
cule via an amine group as indicated in Fig. 1. The monolayers were
prepared by slow deposition from a Hamilton glass syringe (100 pl)
onto an ultrapure water surface (18.2 MQ - cm). The chlorophorm
solutions of DPPC, cholesterol, and ergosterol used had concentra-
tions of 6.8 x 10> mol/dm>. The deposited mixtures of DPPC with
sterols were in a molar ratio of 1:1. The experiments were conducted
in an air-conditioned hutch at 23 °C. In this study, two methods of
AmB/AmB-I preparation were used. In the first method, AmB/AmB-I
was dissolved in DMSO. In the second approach, fresh AmB was dis-
solved before every experiment in ultrapure water containing KOH to
obtain a pH of 12, where AmB solubility in an aqueous solution is
the highest [29,30]. Then a volume of 40 ul was injected under the
monolayer into the experimental cell with an 85-ml volume. After
each injection under the monolayer, the system was stabilized for
30 min by stirring (with a small magnet on the bottom of the cell cavity).
The final pH was 7.2 and the AmB concentration in both methods was
2 pmol/l in the cell volume. Both preparation methods of AmB give
essentially the same results.

The surface pressure and isotherms were measured with the KSV
Helsinki Mini Langmuir trough purged with N, (relative humidity
80%) under a laminar hood.

2.1. Cell and surface diffraction

The experimental Teflon cell for X-ray reflectivity was covered with
Mylar window foil. The meniscus varied between 0.3 and 0.5 mm over
the cell edge. The system was continuously purged with water-
saturated nitrogen (with 99.996% purity). The experiments were
performed using the liquid interfaces scattering apparatus (LISA)
diffractometer [31,32] at the high-resolution diffraction beamline P08
[33] of the PETRA III synchrotron at DESY at an X-ray energy of

- DPPC

25.05 keV. A linear Mythen detector (Dectris) was used, comprising
1280 independent detector pixels, each 50 um high. The incoming
beam was 1 mm wide and 0.1 mm high. XRR measures the intensity
fraction R(q,) reflected from the interface at incidence and reflection an-
gles a and 3 = q, respectively, where g, = (4m/A)sin o Due to diffuse
scattering and other contributions, the background was measured by
offsetting the detector by 0.5° out of the plane of reflection and
subtracted from the specular signal. The scattered intensities were
measured up to ¢ = 1.2 A~ '; however, at q above 1.0 A~ most data
were at the level of the background. In all cases, data were collected
over 10 orders of magnitude.

2.2. Data analysis

For the data at q lower than 0.02°, the statistical errors were in-
creased ten times to limit their weight in the data fitting procedure.
Then the model was fitted to the error weighted experimental data by
the »? method in the Motofit program [34] by the Abeles matrix method
[35]. For the data measured in this study, the X-ray absorption by the
Langmuir layers may be neglected. Because of the small number of
observed fringes and weakly scattered molecules, a simple model with
two layers was used for the lipid monolayers and one layer model for
the pure AmB monolayer. The following parameters were employed
in the fitting procedure: layer thickness, X-ray SLD for both hydrophobic
(I) and hydrophilic (II) layers and the roughness at the air — layer I,
layer I-layer Il and layer Il — solution interfaces. The scale factor was
similar in all cases and in the final fitting stage was set to a constant
value of 0.95 (average from all measurements). The X-ray SLD scale is
defined as in Motofit, which for water is 9.43 x 10~® A=2 The X-ray
SLD of the solution was fixed to 9.3 x 1076 A=2 in all cases (average
value from all fits where this parameter was free) and after that all fits
were repeated. Figs. 3 and 5 present the experimental X-ray data to-
gether with the best fit results, and the parameter values from the fits
are given in Table 1. The amount of incorporated AmB is calculated
from surface area under curves.

3. Results and discussion

DPPC monolayers containing AmB molecules were investigated at
two surface pressures: 24 mN/m and 10 mN/m. At the higher surface

Cholesterol

Fig. 1. Graphs of molecules used in the experiment. The N-iodoacetylamphotericin B (AmB-I) molecule is derived by substitution of the -H atom in the AmB amine group by the

iodoacetate group.
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Fitting values from fits presented in Fig. 3. The layer I tail corresponds to the hydrophobic part of the lipid and the layer Il head to the hydrophilic one. The error bars do not come only from

statistics but also from errors at the preparation stage.

Monolayer Thickness I Thickness II Total thickness X-ray SLD [ X-ray SLD II Air layer I Layer I layer Layer Il water
layer (tails) layer (heads) [A] [x1076 A=2] [x107¢ A2 roughness 1l roughness roughness
[A] [A]
AmB 94 (2) - 18.1 (2) - 6.6 (2) - 2.8 (3)
Surface pressure of 10 mN/m
DPPC 11.0(2) 9.2 (2) 20.2 (3) 9.7 (1) 126 (1) 5.5(2) 23 (3) 1.9(2)
DPPC + AmB 16.7 (2) 7.1(2) 23.8(3) 9.83 (1) 12.5(1) 43 (1) 33 (1) 24 (2)
DPPC + ergo. 14.8 (2) 7.7 (2) 22.5(3) 10.03 (8) 11.36 (8) 43 (1) 29(3) 1.8 (3)
DPPC + ergo. + AmB 18.9 (2) 5.2 (3) 24.1 (3) 11.0 (1) 12.98 (6) 46 (1) 3.0 (3) 2.8 (2)
DPPC + chole. 17.9 (2) 7.3 (1) 25.2(2) 10.0 (1) 11.56 (6) 42 (1) 3.2(2) 1.7 (2)
DPPC + chole. + AmB 17.9 (2) 8.6 (3) 259 (3) 11.0 (1) 12.45 (6) 45 (2) 3.0(3) 2.7 (2)
Surface pressure of 24 mN/m
DPPC 13.8 (3) 9.1 (3) 22.9 (4) 8.7 (1) 13.6 (1) 6.9 (3) 4.1 (2) 33(3)
DPPC + AmB 139 (2) 12,5 (2) 264 (3) 7.6 (1) 126 (1) 5.3 (3) 3.6(2) 22(2)
DPPC + AmB-I 14.8 (2) 10.6 (2) 254 (3) 8.8 (1) 12.2 (1) 5.8 (3) 3.0(2) 23(2)

pressure, the monolayer is already tightly packed and there is not so
much space for newly incoming AmB molecules from the subphase
[36]. The lower surface pressure corresponds to the transition between
the liquid expanded to liquid compressed phase in DPPC [37]. By choos-
ing a surface pressure of 10 mN/m, it is easier to observe any in situ
changes in the X-ray diffraction after AmB incorporation since more
AmB molecules may be incorporated into the monolayer. Langmuir
isotherms show that surface pressure changes are the most pronounced
in the case of the monolayer containing ergosterol and least in the case
of monolayers without sterols, see Fig. 2. This tendency is observed for
both high and low surface pressures. For the higher surface pressure,
the changes after AmB incorporation into the monolayer were ~5
times less pronounced than in the case of the lower surface pressure
[29].

3.1. AmB incorporation into a DPPC monolayer at high surface pressure

To consider the AmB incorporation process into a DPPC monolayer,
an XRR study at a surface pressure of 24 mN/m was first performed.
The reference data from the pure DPPC monolayer were measured
(see Fig. 3) to check their consistency with literature [38]. After AmB
injection from DMSO, the system was left to stabilize for 30 min, and
after that time equilibrium was reached. The XRR data are shown
along with calculated X-ray SLD profiles (right panel) in Fig. 3. The
comparison of DPPC monolayers containing AmB with the pure DPPC
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Fig. 2. Surface pressure changes after injection of AmB (2 pmol/l, pH = 12) under lipid
monolayers with and without sterols at an initial surface pressure of 10 mN/m. The less
pronounced surface pressure changes for AmB-I (dotted-dashed line) are caused by its
higher molecular weight and better solubility in water, compared with AmB.

monolayer at this surface pressure shows that the X-ray SLD increases
mostly in the hydrophobic part of the lipid monolayer. To investigate
the AmB position in the monolayer more precisely, AmB-I with the
same concentration in the subphase as AmB was used. The structure
of this derivative is shown in Fig. 1. Although AmB-I is not as biologically
active as AmB [19], it has iodine which is a good X-ray scatterer and has
a significant contribution to the diffraction signal. It can be seen that
after incorporation of AmB-I into the DPPC monolayer, the first oscilla-
tion at 0.2 A= in the R/R; curve is more pronounced, compared with
those of pure DPPC and DPPC-AmB (see Fig. 3a). The oscillation ampli-
tudes of the second maximum at 0.3 A= ! in R/Rrare 0.07,0.21, and 0.24
for DPPC, DPPC-AmB, and DPPC-AmB-I, respectively. This corresponds
to a change in the X-ray SLD profiles, especially an increased SLD in
layer I, i.e., the tail part of the Langmuir film. AmB and AmB-I overall
have a similar influence on the film structure, with some characteristic
differences (see Table 1). Since AmB-I is more soluble in water than
pure AmB, the distribution law predicts that a lower volume of AmB-I
is incorporated into the lipid monolayer. This is confirmed by the less
pronounced surface pressure changes for DPPC-AmB-I, compared
with DPPC-AmB in Fig. 2 and the lower X-ray SLD for DPPC-AmB-I
than for DPPC-AmB in the hydrophilic part (layer II) of the lipid
monolayer (see Table 1 and Fig. 3b). It can be seen from Fig. 3b that
the monolayer containing AmB-I has a higher SLD near the central
part of the film around ~7 A with respect to that of DPPC-AmB. This is
also seen in the fit results giving a higher X-ray SLD of layer I for
DPPC-AmB-I in comparison with DPPC-AmB (see Table 1). If the solu-
bility of AmB-I in water were comparable to that of AmB, the content
of AmB-I in the monolayer should be the same as that of AmB and
thus the X-ray SLD at ~7 A should be even higher than that observed
in this experiment. The data show that the mycosamine group is located
in the hydrophilic part of the DPPC monolayer both in AmB-I and AmB
(see Fig. 3b). If the AmB mycosamine group were rotated with the
positively charged amine group oriented towards the water surface,
the shape of the X-ray SLD profile (in layer II) should be changed signif-
icantly compared with that of AmB and AmB-I, which is not the case.
AmB is most probably in the dimeric form in the DPPC monolayer
[3,14,16,30,39,40]; however, this cannot be verified from this experiment.

3.2. Low surface pressure

3.2.1. AmB monolayer

The pure AmB monolayer was measured 30 min after injection of the
AmB solution (pH = 12) under water (final concentration 2 pmol/l in the
experimental cell). In this case, the model reveals a monolayer thickness
of 9.4 + 0.2 A, as visible in Fig. 4 (note that here and in Fig. 5 the density
plot is rotated as compared with that in Fig. 3b). The corresponding re-
flectivity data are presented in Fig. 5a. As mentioned above, the AmB
molecules in the monolayer are expected to be in aggregated forms
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Fig. 3.a) Measured XRR data (symbols) and best fits to the model (solid lines) for the monolayers at a surface pressure of 24 mN/m. The reflectivity is normalized by the Fresnel reflectivity
and plotted against the scattering vector g, (curves for AmB are shifted by factor 5 and for AmB-I by factor 25 for better clarity. b) Interfacial X-ray SLD profiles calculated from the fits on the
left and model of the derived orientation of the AmB and AmB-I molecules in the DPPC monolayer.

and lie flat on the surface, as shown in the inset of Fig. 4. These structural
data on the pure AmB monolayer are a good reference point for under-
standing the changes observed in the lipid-sterol-AmB systems
described below.

3.2.2. DPPC monolayer

Fig. 5a shows measured XRR data and best fits for monolayers at a
surface pressure of 10 mN/m. Fig. 5b shows the corresponding X-ray
SLD models, illustrating the effect of AmB incorporation into the DPPC
monolayer at 10 mN/m. These structural changes correspond to the sur-
face pressure changes presented in Fig. 2. It can be seen that also at the
lower surface pressure the X-ray SLD of the hydrophobic part of the
lipid significantly increases for AmB-DPPC (Fig. 5b, dotted-dashed
line), in comparison to the pure DPPC monolayer (Fig. 5b, solid line),
whereas in the hydrophilic part of the lipid the X-ray SLD decreases
(see Table 1). This may suggest that part of the DPPC is involved in the
complex formation between DPPC and AmB. The change of the SLD pro-
file over the entire thickness of the film suggests that the AmB molecules
in the monolayer are oriented with the longest molecular axis along the
surface normal, similar as suggested for multibilayers in reference [41].

3.2.3. DPPC monolayer with ergosterol and cholesterol

In Fig. 5d, the X-ray SLD profiles of the DPPC-ergosterol and DPPC-
cholesterol monolayers, both with a molar ratio of 1:1 between phos-
pholipid and sterol, are compared. The first and main difference is the
thickness of pure DPPC and DPPC-sterol mixtures. Specifically, both
DPPC-ergosterol and DPPC-cholesterol monolayers are thicker by 11%
and 24%, respectively, compared with the pure DPPC layer. This can be
related to well-known acyl chain ordering [42] and additionally to cor-
rugation of monolayers containing sterols. The corrugation can be
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Fig. 4. Interfacial electron density profiles calculated from the fits of the pure AmB mono-
layer and the DPPC monolayer containing AmB at a surface pressure of 10 and 24 mN/m,
showing that the changes in the X-ray SLD profile after AmB incorporation are more
pronounced at the lower surface pressure. The inset shows a schematic illustration of
the AmB monolayer in which the AmB molecules are oriented parallel to the surface.

caused by specific interaction between DPPC and sterols. This corruga-
tion for cholesterol-rich membranes is significantly higher than for the
ergosterol ones, which cannot be explained based purely on the acyl
chain ordering. The difference between the mixtures and pure DPPC is
related to the lower molecular masses of the sterols relative to DPPC
in the part of the lipid polar head groups (layer I, see Fig. 5d). At the
same surface pressure, this results in a lower number of scattering elec-
trons for sterol-containing layers in this part of the X-ray SLD profile.

Not only the layer thicknesses of pure and of sterol-containing DPPC
differ, but also DPPC-cholesterol layers are ~10% thicker than those of
DPPC-ergosterol. One possible explanation, which however would
only be relevant in the case of high sterol concentrations, is that the
monolayer thickness can be affected by sterols protruding from the
monolayer [43]. This is energetically unfavorable as it would require
the hydrophobic part of sterol to be in contact with water. It is more
probable that the ergosterol-rich monolayers are not corrugated.
Moreover, X-ray SLD profiles with sterols increase mostly in the hydro-
phobic part of the monolayer (see Fig. 5d), which is in agreement with a
previous study [43]. For these reasons, we proposed a new model in
which the lipid monolayer containing cholesterol is corrugated,
resulting in an increase in the (average) layer thickness (Fig. 6¢). Such
corrugation would explain the general increase in the thickness of
DPPC containing sterols. Furthermore, a much more pronounced effect
of cholesterol than of ergosterol would be expected, because of the
(five times) stronger DPPC-cholesterol interaction compared with
DPPC-ergosterol [8]. This hypothesis is further supported by the ob-
served difference in surface pressure as a function of surface area [44].
As indicated in reference [44], for surface pressure of 10 mN/m, the sur-
face areas are ~40 A2 and 50 A? for DPPC layers containing cholesterol
and ergosterol, respectively (see Fig. 6¢,d). The lower value indicates
that, for the same amount of molecules at the surface, the mixture of
DPPC-cholesterol requires less space than that of DPPC-ergosterol.
Since the sterols are similar in size, the only option to reduce the surface
area for the DPPC-cholesterol system is monolayer roughness or
corrugation (see Fig. 6¢).

Additionally, it can be seen that the monolayer containing cholester-
ol has a slightly higher X-ray SLD in the hydrocarbon chain part of the
lipid monolayer (—5 to 10 A on thickness axis) as compared with the
DPPC-ergosterol system while the intermediate part at 17 A (shaded
in blue in Fig. 5d) is lower. The higher X-ray SLD in the intermediate
part of the lipid monolayer for ergosterol compared with cholesterol
may indicate a bending of ergosterol molecules, which cannot be
straight in this region because of the presence of a double bond (see
Fig. 1) or lipid head group rearrangement in the presence of this sterol.

3.3. Effect of sterols on AmB incorporation

According to the XRR data (Fig. 5b,c) and in line with the surface
pressure changes (Fig. 2), the presence of cholesterol or ergosterol in
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the Langmuir film results in a significantly larger incorporation of AmB
than for the DPPC monolayer without sterols. This can be explained by
the spacer effect of sterols which facilitate AmB incorporation into the
lipid monolayer. The measured layer thickness varies in all studied
systems, as can be seen in Fig. 5 and Table 1, with the thinnest layers
belonging to DPPC (20.2 A) and the thickest layers belonging to
DPPC-cholesterol-AmB (25.9 A). Fig. 5¢ shows a comparison between
Langmuir films of pure DPPC, DPPC containing ergosterol (layer
thickness 22.5 A), and a mix of DPPC with ergosterol and AmB (layer
thickness 24.1 A). Fig. 5b presents the corresponding data for pure
DPPC, DPPC containing cholesterol (layer thickness 25.2 A), and a mix
of DPPC with cholesterol and AmB (layer thickness 25.9 A). It can be
seen that in both cases the amount of incorporated AmB into the mono-
layer is similar, i.e., there is a ~20% increase in X-ray SLD compared to
AmB in the pure DPPC (see Fig. 5e).

This is contrary to the interpretation based purely on the surface
pressure changes where a higher surface pressure is generally
interpreted as an indication of a greater amount of AmB incorporation
into the monolayer [36]. The XRR observations suggest that the more
pronounced surface pressure changes in the presence of ergosterol (see
Fig. 2) are caused by changes in the film structure rather than in the
amount of incorporated molecules. Specifically, the data clearly show
that, similar to the DPPC-sterol monolayers, the DPPC-cholesterol-
AmB monolayer is also 10% thicker than the DPPC-ergosterol-AmB
monolayer (tails + heads). Together with the roughness increase from
1.7 to 2.7, this suggests that the layer of DPPC-cholesterol-AmB is
rough or corrugated/buckled, whereas the DPPC-ergosterol-AmB
remains smoother. The increased thickness of DPPC-ergosterol-AmB as
compared with DPPC-ergosterol layers is most likely caused by the
vertical extension of the AmB, since it is within the experimental errors
identical to the thickness of DPPC-AmB. A more detailed analysis of
Fig. 5e reveals that the X-ray SLD profiles of monolayers containing
sterols and AmB increase similarly in Layer I and Layer II (see Fig. 5e).
This suggests that AmB molecules are standing up, with the longest
axis perpendicular to the surface (see Fig. 6e,f).

4. Conclusions

In summary, we present for the first time structural data for AmB in-
corporation into DPPC monolayers at surface pressures of 10 mN/m and
24 mN/m, which provides insight into the location and orientation of
AmB molecules in the lipid layer. It is clear from the experimental
results that the mycosamine group of iodine-marked AmB (AmB-I) is
located in the hydrophilic (Layer II) part of the lipid monolayer and
that AmB-I are oriented with the long axis perpendicular to the surface.
Because the X-ray SLD profiles for AmB are very similar to the one of
AmB-I, it can be concluded that both molecules and mycosamine
subunits have a similar orientation in the monolayer.

The most important result concerns differences between the X-ray
SLD profiles of DPPC-cholesterol and DPPC-ergosterol monolayers. In
the case of cholesterol, the monolayer is thicker, suggesting monolayer
corrugation/buckling due to stronger interactions between the sterol
and DPPC. Surprisingly, the difference between DPPC-cholesterol and
DPPC-ergosterol does not influence the amount of AmB incorporation
into the monolayer. In both cases, the density of AmB incorporated in
the monolayer is the same according to the XRR data, indicating that
the monolayer availability for AmB is the same for these two sterols.
This observation is apparently contrary to the surface pressure changes
where the biggest differences are observed for DPPC-ergosterol-AmB,
while the one for DPPC-cholesterol-AmB are almost two-fold smaller.
However, this discrepancy can be explained by structural differences
of ergosterol- and cholesterol-containing DPPC layers. Similar to the
DPPC-cholesterol, also the DPPC-cholesterol-AmB monolayers have a
larger average thickness than their ergosterol-containing counterparts.
Taking into account these X-ray results and surface pressure changes,
it can be concluded that the DPPC-cholesterol-AmB monolayer is also

corrugated/buckled while the DPPC-ergosterol-AmB monolayer is
more flat. To test the buckling hypothesis we design a new experiment
with marked lipid molecules.

The buckling effect can influence the aggregation process of AmB in
membranes and thus formation of pores. For more flat ergosterol-rich
membranes this can lead to the formation of well shaped pores while
for cholesterol-rich membranes the buckling can be responsible for
the formation of aggregates.
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