30,332 research outputs found

    The Wardle Instability in Interstellar Shocks: I. Nonlinear Dynamical Evolution

    Full text link
    The nonlinear evolution of unstable C-type shocks in weakly ionized plasmas is studied by means of time-dependent magnetohydrodynamical simulations. This study is limited to shocks in magnetically dominated plasmas (in which the Alfven speed in the neutrals greatly exceeds the sound speed), and microphysical processes such as ionization and recombination are not followed. Both two-dimensional simulations of planar perpendicular and oblique C-type shocks, and fully three-dimensional simulation of a perpendicular shock are presented.Comment: 20 pages, 7 Postscript figures, LaTeX, accepted by Ap.

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    Ambipolar Diffusion-Mediated Thermal Fronts in the Neutral ISM

    Full text link
    In a thermally bistable medium, cold, dense gas is separated from warm, rareified gas by thin phase transition layers, or fronts, in which heating, radiative cooling, thermal conduction, and convection of material are balanced. We calculate the steady-state structure of such fronts in the presence of magnetic fields, including the processes of ion-neutral drift and ion-neutral frictional heating. We find that ambipolar diffusion efficiently transports the magnetic field across the fronts, leading to a flat magnetic field strength profile. The thermal profiles of such fronts are not significantly different from those of unmagnetized fronts. The near uniformity of the magnetic field strength across a front is consistent with the flat field strength-gas density relation that is observed in diffuse interstellar gas.Comment: 17 pages, 12 figures, 1 table, accepted for publication in Ap

    Finite Nuclei in the Quark-Meson Coupling (QMC) Model

    Get PDF
    We report the first use of the effective QMC energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the non-relativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having clear physical basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist however multiple Skyrme paramater sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, as derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.Comment: 9 pages, 1 table, 4 figures; in print in Phys. Rev. Letters. A minor change in the abstract, a few typos corrected and some small technical adjustments made to comply with the journal regulation

    The role of virtual reality in built environment education

    Get PDF
    This study builds upon previous research on the integration of Virtual Reality (VR) within the built environment curriculum and aims to investigate the role of VR and three-dimensional (3D) computer modelling on learning and teaching in a school of the built environment. In order to achieve this aim, a number of academic experiences were analysed to explore the applicability and viability of 3D computer modelling and VR into built environment subject areas. Although two-dimensional (2D) representations have been greatly accepted by built environment professions and education, 3D computer representations and VR applications, offering interactivity and immersiveness, are not yet widely accepted. The study attempts to understand the values and challenges of integrating visualisation technologies into built environment teaching and investigates tutors’ perceptions, opinions and concerns with respect to these technologies. The study reports on the integration process and considers how 3D computer modelling and VR technologies can combine with, and extend, the existing range of learning and teaching methods appropriate to different disciplines and programme areas

    Non locality and causal evolution in QFT

    Full text link
    Non locality appearing in QFT during the free evolution of localized field states and in the Feynman propagator function is analyzed. It is shown to be connected to the initial non local properties present at the level of quantum states and then it does not imply a violation of Einstein's causality. Then it is investigated a simple QFT system with interaction, consisting of a classical source coupled linearly to a quantum scalar field, that is exactly solved. The expression for the time evolution of the state describing the system is given. The expectation value of any arbitrary ``good'' local observable, expressed as a function of the field operator and its space and time derivatives, is obtained explicitly at all order in the field-matter coupling constant. These expectation values have a source dependent part that is shown to be always causally retarded, while the non local contributions are source independent and related to the non local properties of zero point vacuum fluctuations.Comment: Submitted to Journal of Physics B: 16 pages: 1 figur
    • …
    corecore