13 research outputs found

    Using resting-state DMN effective connectivity to characterize the neurofunctional architecture of empathy

    Get PDF
    Neuroimaging studies in social neuroscience have largely relied on functional connectivity (FC) methods to characterize the functional integration between different brain regions. However, these methods have limited utility in social-cognitive studies that aim to understand the directed information flow among brain areas that underlies complex psychological processes. In this study we combined functional and effective connectivity approaches to characterize the functional integration within the Default Mode Network (DMN) and its role in self-perceived empathy. Forty-two participants underwent a resting state fMRI scan and completed a questionnaire of dyadic empathy. Independent Component Analysis (ICA) showed that higher empathy scores were associated with an increased contribution of the medial prefrontal cortex (mPFC) to the DMN spatial mode. Dynamic causal modelling (DCM) combined with Canonical Variance Analysis (CVA) revealed that this association was mediated indirectly by the posterior cingulate cortex (PCC) via the right inferior parietal lobule (IPL). More specifically, in participants with higher scores in empathy, the PCC had a greater effect on bilateral IPL and the right IPL had a greater influence on mPFC. These results highlight the importance of using analytic approaches that address directed and hierarchical connectivity within networks, when studying complex psychological phenomena, such as empathy.- This study was funded by BIAL Foundation (Grant number 87/12); by the Portuguese Foundation for Science and Technology and the Portuguese Ministry of Education and Science through national funds and co-financed by FEDER through COMPETE2020 under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007653); by the postdoctoral scholarship UMINHO/BPD/18/2017 and by the Portuguese Foundation for Science Doctoral scholarship (PD/BD/105963/2014). This work was conducted at Psychology Research Centre (UID/PSI/01662/2013), University of Minho

    In search of the “I”: Neuropsychology of lateralized thinking meets Dynamic Causal Modeling

    No full text
    Background. Ideas about relationships between “I”, egocentric spatial orientation and the sense of bodily “Self ” date back to work by classics of philosophy and psychology. Cognitive neuroscience has provided knowledge about brain areas involved in self-ref­erential processing, such as the rostral prefrontal, temporal and parietal cortices, often active as part of the default mode network (DMN). Objective and Method. Little is known about the contribution of inferior parietal areas to self-referential processing. Therefore, we collected observations of everyday be­havior, social communication and problem solving in patients with brain lesions local­ized either in the left inferior parietal cortex (LIPC group, n = 45) or the right inferior parietal cortex (RIPC group, n = 58). Results. A key characteristic of the LIPC group was an overestimation of task com­plexity. This led to a prolonged phase of redundant and disruptive contemplations pre­ceding task solution. In the RIPC group, we observed disorders in reflective control and voluntary regulation of behavior. Abilities for experiencing emotions, understanding mental states, and social communication were to a great extent lost. Results are inter­preted within a multilevel framework of cognitive-affective organization (velichkovsky, 2002). In particular, we highlight the role of right-hemisphere mechanisms in self-refer­ential cognition, emotional and corporeal awareness. This is consistent with recent data on a profound asymmetry in connectivity of left and right hippocampi within the DMN (Ushakov et al., 2016) Conclusion. It seems that the center of egocentric spatial representation plays a spe­cial role in accessing self-related data. Normally, the right hippocampus provides a holis­tic representation of surrounding and, thus, an easy-to-find gateway into much of what we used to call “subjective experience”. This heuristics becomes misleading in the case of right-sided brain lesions

    The main ways of resource saving in the cultivation of spring wheat in the western part of the Republic of Kalmykia

    Get PDF
    The article presents the results of four-year researches concerning the optimal conditions of spring wheat growing on light-chestnut (brown) soils of the east part of Kalmykia. There has been established the promising technological range of water and mineral supply, and there have been determined the spring wheat varieties with a great response on these intensification factors. The article gives the characteristics of climatic conditions of the region, the methods of conducting of field experiments and the scheme of fulfilling of field trials. The results of the experimental and theoretical researches of the resource-saving technology of spring wheat cultivation with the optimization of irrigation regime and mineral supply have been considered. The resource-saving technology of spring wheat cultivation on slightly saline light-chestnut soils has been developed, that allows decreasing specific consumption of irrigational water on 10-30% and allows yielding 6 t/ha of grain with 15.9-17.0% of protein and 39.2-41.5% of raw gluten

    The developmental trajectory of fronto‐temporoparietal connectivity as a proxy of the default mode network: a longitudinal fNIRS investigation

    No full text
    The default mode network (DMN) is a network of brain regions that is activated while we are not engaged in any particular task. While there is a large volume of research documenting functional connectivity within the DMN in adults, knowledge of the development of this network is still limited. There is some evidence for a gradual increase in the functional connections within the DMN during the first 2 years of life, in contrast to other functional resting-state networks that support primary sensorimotor functions, which are online from very early in life. Previous studies that investigated the development of the DMN acquired data from sleeping infants using fMRI. However, sleep stages are known to affect functional connectivity. In the current longitudinal study, fNIRS was used to measure spontaneous fluctuations in connectivity within fronto-temporoparietal areas-as a proxy for the DMN-in awake participants every 6 months from 11 months till 36 months. This study validates a method for recording resting-state data from awake infants, and presents a data analysis pipeline for the investigation of functional connections with infant fNIRS data, which will be beneficial for researchers in this field. A gradual development of fronto-temporoparietal connectivity was found, supporting the idea that the DMN develops over the first years of life. Functional connectivity reached its maximum peak at about 24 months, which is consistent with previous findings showing that, by 2 years of age, DMN connectivity is similar to that observed in adults
    corecore