1,583 research outputs found

    On the Connection of Anisotropic Conductivity to Tip Induced Space Charge Layers in Scanning Tunneling Spectroscopy of p-doped GaAs

    Full text link
    The electronic properties of shallow acceptors in p-doped GaAs{110} are investigated with scanning tunneling microscopy at low temperature. Shallow acceptors are known to exhibit distinct triangular contrasts in STM images for certain bias voltages. Spatially resolved I(V)-spectroscopy is performed to identify their energetic origin and behavior. A crucial parameter - the STM tip's work function - is determined experimentally. The voltage dependent potential configuration and band bending situation is derived. Ways to validate the calculations with the experiment are discussed. Differential conductivity maps reveal that the triangular contrasts are only observed with a depletion layer present under the STM tip. The tunnel process leading to the anisotropic contrasts calls for electrons to tunnel through vacuum gap and a finite region in the semiconductor.Comment: 11 pages, 8 figure

    Scanning tunneling microscopy and spectroscopy at low temperatures of the (110) surface of Te doped GaAs single crystals

    Full text link
    We have performed voltage dependent imaging and spatially resolved spectroscopy on the (110) surface of Te doped GaAs single crystals with a low temperature scanning tunneling microscope (STM). A large fraction of the observed defects are identified as Te dopant atoms which can be observed down to the fifth subsurface layer. For negative sample voltages, the dopant atoms are surrounded by Friedel charge density oscillations. Spatially resolved spectroscopy above the dopant atoms and above defect free areas of the GaAs (110) surface reveals the presence of conductance peaks inside the semiconductor band gap. The appearance of the peaks can be linked to charges residing on states which are localized within the tunnel junction area. We show that these localized states can be present on the doped GaAs surface as well as at the STM tip apex.Comment: 8 pages, 8 figures, accepted for publication in PR

    Graphene formed on SiC under various environments: Comparison of Si-face and C-face

    Full text link
    The morphology of graphene on SiC {0001} surfaces formed in various environments including ultra-high vacuum, 1 atm of argon, and 10^-6 to 10^-4 Torr of disilane is studied by atomic force microscopy, low-energy electron microscopy, and Raman spectroscopy. The graphene is formed by heating the surface to 1100 - 1600 C, which causes preferential sublimation of the Si atoms. The argon atmosphere or the background of disilane decreases the sublimation rate so that a higher graphitization temperature is required, thus improving the morphology of the films. For the (0001) surface, large areas of monolayer-thick graphene are formed in this way, with the size of these areas depending on the miscut of the sample. Results on the (000-1) surface are more complex. This surface graphitizes at a lower temperature than for the (0001) surface and consequently the growth is more three-dimensional. In an atmosphere of argon the morphology becomes even worse, with the surface displaying markedly inhomogeneous nucleation, an effect attributed to unintentional oxidation of the surface during graphitization. Use of a disilane environment for the (000-1) surface is found to produce improved morphology, with relatively large areas of monolayer-thick graphene.Comment: 22 pages, 11 figures, Proceedings of STEG-2 Conference; eliminated Figs. 4 and 7 from version 1, for brevity, and added Refs. 18, 29, 30, 31 together with associated discussio

    Sub-nanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation

    Get PDF
    A facility for sub-nanosecond time-resolved (pump-probe) infrared spectroscopy has been developed at the National Synchrotron Light Source of Brookhaven National Laboratory. A mode-locked Ti:sapphire laser produces 2 ps duration, tunable near-IR pump pulses synchronized to probe pulses from a synchrotron storage ring. The facility is unique on account of the broadband infrared from the synchrotron, which allows the entire spectral range from 2 cm-1 (0.25 meV) to 20,000 cm-1 (2.5 eV) to be probed. A temporal resolution of 200 ps, limited by the infrared synchrotron-pulse duration, is achieved. A maximum time delay of 170 ns is available without gating the infrared detector. To illustrate the performance of the facility, a measurement of electron-hole recombination dynamics for an HgCdTe semiconductor film in the far- and mid infrared range is presented.Comment: 11 pages with 9 figures include

    Atom-by-Atom Substitution of Mn in GaAs and Visualization of their Hole-Mediated Interactions

    Full text link
    The discovery of ferromagnetism in Mn doped GaAs [1] has ignited interest in the development of semiconductor technologies based on electron spin and has led to several proof-of-concept spintronic devices [2-4]. A major hurdle for realistic applications of (Ga,Mn)As, or other dilute magnetic semiconductors, remains their below room-temperature ferromagnetic transition temperature. Enhancing ferromagnetism in semiconductors requires understanding the mechanisms for interaction between magnetic dopants, such as Mn, and identifying the circumstances in which ferromagnetic interactions are maximized [5]. Here we report the use of a novel atom-by-atom substitution technique with the scanning tunnelling microscope (STM) to perform the first controlled atomic scale study of the interactions between isolated Mn acceptors mediated by the electronic states of GaAs. High-resolution STM measurements are used to visualize the GaAs electronic states that participate in the Mn-Mn interaction and to quantify the interaction strengths as a function of relative position and orientation. Our experimental findings, which can be explained using tight-binding model calculations, reveal a strong dependence of ferromagnetic interaction on crystallographic orientation. This anisotropic interaction can potentially be exploited by growing oriented Ga1-xMnxAs structures to enhance the ferromagnetic transition temperature beyond that achieved in randomly doped samples. Our experimental methods also provide a realistic approach to create precise arrangements of single spins as coupled quantum bits for memory or information processing purposes

    Currency Unions and Trade: A PPML Re-Assessment with High-Dimensional Fixed Effects

    Get PDF
    Recent work on the effects of currency unions (CUs) on trade stresses the importance of using many countries and years in order to obtain reliable estimates. However, for large samples, computational issues associated with the three-way (exporter-time, importer-time, and country-pair) fixed effects currently recommended in the gravity literature have heretofore limited the choice of estimator, leaving an important methodological gap. To address this gap, we introduce an iterative Poisson Pseudo-Maximum Likelihood (PPML) estimation procedure that facilitates the inclusion of these fixed effects for large data sets and also allows for correlated errors across countries and time. When applied to a comprehensive sample with more than 200 countries trading over 65 years, these innovations flip the conclusions of an otherwise rigorously-specified linear model. Most importantly, our estimates for both the overall CU effect and the Euro effect specifically are economically small and statistically insignificant. We also document that linear and PPML estimates of the Euro effect increasingly diverge as the sample size grows

    Through-thickness superconducting and normal-state transport properties revealed by thinning of thick film ex situ YBa2Cu3O7-x coated conductors

    Full text link
    A rapid decrease in the critical current density (Jc) of YBa2Cu3O7-x (YBCO) films with increasing film thickness has been observed for multiple YBCO growth processes. While such behavior is predicted from 2D collective pinning models under certain assumptions, empirical observations of the thickness dependence of Jc are believed to be largely processing dependent at present. To investigate this behavior in ex situ YBCO films, 2.0 and 2.9 um thick YBCO films on ion beam assisted deposition (IBAD) - yttria stabilized zirconia (YSZ) substrates were thinned and repeatedly measured for rho(T) and Jc(H). The 2.9 um film exhibited a constant Jc(77K,SF) through thickness of ~1 MA/cm2 while the 2.0 um film exhibited an increase in Jc(77K,SF) as it was thinned. Neither film offered evidence of significant dead layers, suggesting that further increases in critical current can be obtained by growing thicker YBCO layers.Comment: To appear in Applied Physics Letter

    Electronic and structural properties of vacancies on and below the GaP(110) surface

    Full text link
    We have performed total-energy density-functional calculations using first-principles pseudopotentials to determine the atomic and electronic structure of neutral surface and subsurface vacancies at the GaP(110) surface. The cation as well as the anion surface vacancy show a pronounced inward relaxation of the three nearest neighbor atoms towards the vacancy while the surface point-group symmetry is maintained. For both types of vacancies we find a singly occupied level at mid gap. Subsurface vacancies below the second layer display essentially the same properties as bulk defects. Our results for vacancies in the second layer show features not observed for either surface or bulk vacancies: Large relaxations occur and both defects are unstable against the formation of antisite vacancy complexes. Simulating scanning tunneling microscope pictures of the different vacancies we find excellent agreement with experimental data for the surface vacancies and predict the signatures of subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
    • 

    corecore