833 research outputs found

    Multinode reconfigurable pipeline computer

    Get PDF
    A multinode parallel-processing computer is made up of a plurality of innerconnected, large capacity nodes each including a reconfigurable pipeline of functional units such as Integer Arithmetic Logic Processors, Floating Point Arithmetic Processors, Special Purpose Processors, etc. The reconfigurable pipeline of each node is connected to a multiplane memory by a Memory-ALU switch NETwork (MASNET). The reconfigurable pipeline includes three (3) basic substructures formed from functional units which have been found to be sufficient to perform the bulk of all calculations. The MASNET controls the flow of signals from the memory planes to the reconfigurable pipeline and vice versa. the nodes are connectable together by an internode data router (hyperspace router) so as to form a hypercube configuration. The capability of the nodes to conditionally configure the pipeline at each tick of the clock, without requiring a pipeline flush, permits many powerful algorithms to be implemented directly

    The Coming Age of Parallel-Processing Supercomputer

    Get PDF
    It is anticipated that the needs of scientific computation will dramatically outpace the performance of general-purpose supercomputers over the next decade. These needs will, however, be addressed by an emerging class of parallelprocessing supercomputers (PPS). The Princeton University Navier-Stokes Computer (NSC) is a PPS geared toward simulating complex flows. It has a projected speed and capacity two orders of magnitude beyond that of current supercomputers. The architecture of the NSC and a discussion of a working prototype is presented

    Hall-Effect for Neutral Atoms

    Full text link
    It is shown that polarizable neutral systems can drift in crossed magnetic and electric fileds. The drift velocity is perpendicular to both fields, but contrary to the drif t velocity of a charged particle, it exists only, if fields vary in space or in time. We develop an adiabatic theory of this phenomenon and analyze conditions of its experimental observation. The most proper objects for the observation of this effect are Rydberg atoms. It can be applied for the separation of excited atoms.Comment: RevTex, 4 pages; to be published in Pis'ma v ZhET

    An exploration of ebook selection behavior in academic library collections

    Get PDF
    Academic libraries have offered ebooks for some time, however little is known about how readers interact with them while making relevance decisions. In this paper we seek to address that gap by analyzing ebook transaction logs for books in a university library

    Next nearest neighbour Ising models on random graphs

    Full text link
    This paper develops results for the next nearest neighbour Ising model on random graphs. Besides being an essential ingredient in classic models for frustrated systems, second neighbour interactions interactions arise naturally in several applications such as the colour diversity problem and graphical games. We demonstrate ensembles of random graphs, including regular connectivity graphs, that have a periodic variation of free energy, with either the ratio of nearest to next nearest couplings, or the mean number of nearest neighbours. When the coupling ratio is integer paramagnetic phases can be found at zero temperature. This is shown to be related to the locked or unlocked nature of the interactions. For anti-ferromagnetic couplings, spin glass phases are demonstrated at low temperature. The interaction structure is formulated as a factor graph, the solution on a tree is developed. The replica symmetric and energetic one-step replica symmetry breaking solution is developed using the cavity method. We calculate within these frameworks the phase diagram and demonstrate the existence of dynamical transitions at zero temperature for cases of anti-ferromagnetic coupling on regular and inhomogeneous random graphs.Comment: 55 pages, 15 figures, version 2 with minor revisions, to be published J. Stat. Mec

    Green's functions for parabolic systems of second order in time-varying domains

    Full text link
    We construct Green's functions for divergence form, second order parabolic systems in non-smooth time-varying domains whose boundaries are locally represented as graph of functions that are Lipschitz continuous in the spatial variables and 1/2-H\"older continuous in the time variable, under the assumption that weak solutions of the system satisfy an interior H\"older continuity estimate. We also derive global pointwise estimates for Green's function in such time-varying domains under the assumption that weak solutions of the system vanishing on a portion of the boundary satisfy a certain local boundedness estimate and a local H\"older continuity estimate. In particular, our results apply to complex perturbations of a single real equation.Comment: 25 pages, 0 figur

    On the discrete spectrum of spin-orbit Hamiltonians with singular interactions

    Full text link
    We give a variational proof of the existence of infinitely many bound states below the continuous spectrum for spin-orbit Hamiltonians (including the Rashba and Dresselhaus cases) perturbed by measure potentials thus extending the results of J.Bruening, V.Geyler, K.Pankrashkin: J. Phys. A 40 (2007) F113--F117.Comment: 10 pages; to appear in Russian Journal of Mathematical Physics (memorial volume in honor of Vladimir Geyler). Results improved in this versio

    Atomic Resonance and Scattering

    Get PDF
    Contains research objectives, summary of research and reports on four research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300National Science Foundation (Grant GP-28679)National Bureau of Standards (Grant NBS2-9011)U. S. Air Force - Office of Scientific Research (Contract F44620-72-C-0057

    A limit model for thermoelectric equations

    Full text link
    We analyze the asymptotic behavior corresponding to the arbitrary high conductivity of the heat in the thermoelectric devices. This work deals with a steady-state multidimensional thermistor problem, considering the Joule effect and both spatial and temperature dependent transport coefficients under some real boundary conditions in accordance with the Seebeck-Peltier-Thomson cross-effects. Our first purpose is that the existence of a weak solution holds true under minimal assumptions on the data, as in particular nonsmooth domains. Two existence results are studied under different assumptions on the electrical conductivity. Their proofs are based on a fixed point argument, compactness methods, and existence and regularity theory for elliptic scalar equations. The second purpose is to show the existence of a limit model illustrating the asymptotic situation.Comment: 20 page

    Vortex Rings in Fast Rotating Bose-Einstein Condensates

    Full text link
    When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex phase appears, that is the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii energy on the unit disc. In particular we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold there are vortices in the condensate. We prove that they gather along a particular circle on which they are evenly distributed. This is done by providing new upper and lower bounds to the GP energy.Comment: to appear in Archive of Rational Mechanics and Analysi
    corecore