463 research outputs found

    Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization

    Get PDF
    Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.

    Group 3 metal stilbene complexes: synthesis, reactivity, and electronic structure studies

    Full text link
    Group 3 metal (E)-stilbene complexes supported by a ferrocene diamide ligand were synthesized and characterized. Reactivity studies showed that they behave similar to analogous naphthalene complexes. Experimental and computational results indicated that the double bond was reduced and not a phenyl ring, in contrast to a previously reported uranium (E)-stilbene complex

    Small Molecule Activation by Uranium Tris(aryloxides): Experimental and Computational Studies of Binding of N-2, Coupling of CO, and Deoxygenation Insertion of CO2 under Ambient Conditions

    Get PDF
    Previously unanticipated dinitrogen activation is exhibited by the well-known uranium tris(aryloxide) U(ODtbp)(3), U(OC6H3-Bu-2(t)-2,6)(3), and the tri-tert-butyl analogue U(OTtbp)(3), U(OC6H2-Bu-3(t)-2,4,6)(3), in the form of bridging, side-on dinitrogen complexes [U(OAr)(3)](2)(mu-eta(2):eta(2)-N-2), for which the tri-tert-butyl N-2 complex is the most robust U-2(N-2) complex isolated to date. Attempted reduction of the tris(aryloxide) complex under N-2 gave only the potassium salt of the uranium(III) tetra(aryloxide) anion, K[U(OAr)(4)], as a result of ligand redistribution. The solid-state structure is a polymeric chain formed by each potassium cation bridging two arenes of adjacent anions in an eta(6) fashion. The same uranium tris(aryloxides) were also found to couple carbon monoxide under ambient conditions to give exclusively the ynediolate [OCCO](2-) dianion in [U(OAr)(3)](2)(mu-eta(1):eta(1)-C2O2), in direct analogy with the reductive coupling recently shown to afford [U{N(SiMe3)(2)}(3)](2)(mu-eta(1):eta(1)-C2O2). The related U-III complexes U{N(SiPhMe2)(2)}(3) and U{CH(SiMe3)(2)}(3) however do not show CO coupling chemistry in our hands. Of the aryloxide complexes, only the U(OC6H2-Bu-3(t)-2,4,6)(3) reacts with CO2 to give an insertion product containing bridging oxo and aryl carbonate moieties, U-2(OTtbp)(4)(mu-O)(mu-eta(1):eta(1)-O2COC6H2-Bu-3(t)-2,4,6)(2), which has been structurally characterized. The presence of coordinated N-2 in [U(OTtbp)(3)](2)(N-2) prevents the occurrence of any reaction with CO2, underscoring the remarkable stability of the N-2 complex. The di-tert-butyl aryloxide does not insert CO2, and only U(ODtbp)(4) was isolated. The silylamide also reacts with carbon dioxide to afford U(OSiMe3)(4) as the only uranium-containing material. GGA and hybrid DFT calculations, in conjunction with topological analysis of the electron density, suggest that the U-N-2 bond is strongly polar, and that the only covalent U -> N-2 interaction is pi backbonding, leading to a formal (U-IV)(2)(N-2)(2-) description of the electronic structure. The N-N stretching wavenumber is preferred as a metric of N-2 reduction to the N-N bond length, as there is excellent agreement between theory and experiment for the former but poorer agreement for the latter due to X-ray crystallographic underestimation of r(N-N). Possible intermediates on the CO coupling pathway to [U(OAr)(3)](2)(mu-C2O2) are identified, and potential energy surface scans indicate that the ynediolate fragment is more weakly bound than the ancillary ligands, which may have implications in the development of low-temperature and pressure catalytic CO chemistry
    corecore