16,596 research outputs found

    The whole mesh Deformation Model for 2D and 3D image segmentation

    Get PDF
    In this paper we present a novel approach for image segmentation using Active Nets and Active Volumes. Those solutions are based on the Deformable Models, with slight difference in the method for describing the shapes of interests - instead of using a contour or a surface they represented the segmented objects with a mesh structure, which allows to describe not only the surface of the objects but also to model their interiors. This is obtained by dividing the nodes of the mesh in two categories, namely internal and external ones, which will be responsible for two different tasks. In our new approach we propose to negate this separation and use only one type of nodes. Using that assumption we manage to significantly shorten the time of segmentation while maintaining its quality

    Confinement of two-dimensional excitons in a non-homogeneous magnetic field

    Full text link
    The effective Hamiltonian describing the motion of an exciton in an external non-homogeneous magnetic field is derived. The magnetic field plays the role of an effective potential for the exciton motion, results into an increment of the exciton mass and modifies the exciton kinetic energy operator. In contrast to the homogeneous field case, the exciton in a non-homogeneous magnetic field can also be trapped in the low field region and the field gradient increases the exciton confinement. The trapping energy and wave function of the exciton in a GaAs two-dimensional electron gas for specific circular magnetic field configurations are calculated. The results show than excitons can be trapped by non-homogeneous magnetic fields, and that the trapping energy is strongly correlated with the shape and strength of the non-homogeneous magnetic field profile.Comment: 9 pages, 12 figure

    Experimental demonstration of a mu=-1 metamaterial lens for magnetic resonance imaging

    Full text link
    In this work a mu=-1 metamaterial (MM) lens for magnetic resonance imaging (MRI) is demonstrated. MRI uses surface coils to detect the radiofrequency(RF) energy absorbed and emitted by the nuclear spins in the imaged object. The proposed MM lens manipulates the RF field detected by these surface coils, so that the coil sensitivity and spatial localization is substantially improved. Beyond this specific application, we feel that the reported results are the experimental confirmation of a new concept for the manipulation of RF field in MRI, which paves the way to many other interesting applications.Comment: 9 pages, 3 figure

    Gauge invariance, background fields and modified Ward identities

    Get PDF
    In this talk the gauge symmetry for Wilsonian flows in pure Yang-Mills theories is discussed. The background field formalism is used for the construction of a gauge invariant effective action. The symmetries of the effective action under gauge transformations for both the gauge field and the auxiliary background field are separately evaluated. Modified Ward-Takahashi and background field identities are used in my study. Finally it is shown how the symmetry properties of the full theory are restored in the limit where the cut-off is removed.Comment: 6 pages, to appear in the Proceedings of the 2nd Conference on the Exact Renormalization Group, Rome 200

    Exciton trapping in magnetic wire structures

    Full text link
    The lateral magnetic confinement of quasi two-dimensional excitons into wire like structures is studied. Spin effects are take into account and two different magnetic field profiles are considered, which experimentally can be created by the deposition of a ferromagnetic stripe on a semiconductor quantum well with magnetization parallel or perpendicular to the grown direction of the well. We find that it is possible to confine excitons into one-dimensional (1D) traps. We show that the dependence of the confinement energy on the exciton wave vector, which is related to its free direction of motion along the wire direction, is very small. Through the application of a background magnetic field it is possible to move the position of the trapping region towards the edge of the ferromagnetic stripe or even underneath the stripe. The exact position of this 1D exciton channel depends on the strength of the background magnetic field and on the magnetic polarisation direction of the ferromagnetic film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte

    The Timing of Nine Globular Cluster Pulsars

    Full text link
    We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with past authors, except for PSR J1701-3006B in M62. Gas in this system is probably responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called "black widow" class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that one of the pulsars in NGC 6624 is indeed a member of the rare class of non-recycled pulsars found in globular clusters. We also have measured the orbital precession and Shapiro delay for a relativistic binary in NGC 6544. If we assume that the orbital precession can be described entirely by general relativity, which is likely, we are able to measure the total system mass (2.57190(73) M_sun) and companion mass (1.2064(20) M_sun), from which we derive the orbital inclination [sin(i) = 0.9956(14)] and the pulsar mass (1.3655(21) M_sun), the most precise such measurement ever obtained for a millisecond pulsar. The companion is the most massive known around a fully recycled pulsar.Comment: Published in ApJ; 33 pages, 5 figures, 7 table
    • 

    corecore