7,677 research outputs found

    Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices

    Get PDF
    In a recent work Killip and Nenciu gave random recurrences for the characteristic polynomials of certain unitary and real orthogonal upper Hessenberg matrices. The corresponding eigenvalue p.d.f.'s are beta-generalizations of the classical groups. Left open was the direct calculation of certain Jacobians. We provide the sought direct calculation. Furthermore, we show how a multiplicative rank 1 perturbation of the unitary Hessenberg matrices provides a joint eigenvalue p.d.f generalizing the circular beta-ensemble, and we show how this joint density is related to known inter-relations between circular ensembles. Projecting the joint density onto the real line leads to the derivation of a random three-term recurrence for polynomials with zeros distributed according to the circular Jacobi beta-ensemble.Comment: 23 page

    A Combinatorial Interpretation of the Free Fermion Condition of the Six-Vertex Model

    Full text link
    The free fermion condition of the six-vertex model provides a 5 parameter sub-manifold on which the Bethe Ansatz equations for the wavenumbers that enter into the eigenfunctions of the transfer matrices of the model decouple, hence allowing explicit solutions. Such conditions arose originally in early field-theoretic S-matrix approaches. Here we provide a combinatorial explanation for the condition in terms of a generalised Gessel-Viennot involution. By doing so we extend the use of the Gessel-Viennot theorem, originally devised for non-intersecting walks only, to a special weighted type of \emph{intersecting} walk, and hence express the partition function of NN such walks starting and finishing at fixed endpoints in terms of the single walk partition functions

    Correlations in two-component log-gas systems

    Full text link
    A systematic study of the properties of particle and charge correlation functions in the two-dimensional Coulomb gas confined to a one-dimensional domain is undertaken. Two versions of this system are considered: one in which the positive and negative charges are constrained to alternate in sign along the line, and the other where there is no charge ordering constraint. Both systems undergo a zero-density Kosterlitz-Thouless type transition as the dimensionless coupling Γ:=q2/kT\Gamma := q^2 / kT is varied through Γ=2\Gamma = 2. In the charge ordered system we use a perturbation technique to establish an O(1/r4)O(1/r^4) decay of the two-body correlations in the high temperature limit. For Γ2+\Gamma \rightarrow 2^+, the low-fugacity expansion of the asymptotic charge-charge correlation can be resummed to all orders in the fugacity. The resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys. Shortened version of abstract belo

    Correlation functions for random involutions

    Get PDF
    Our interest is in the scaled joint distribution associated with kk-increasing subsequences for random involutions with a prescribed number of fixed points. We proceed by specifying in terms of correlation functions the same distribution for a Poissonized model in which both the number of symbols in the involution, and the number of fixed points, are random variables. From this, a de-Poissonization argument yields the scaled correlations and distribution function for the random involutions. These are found to coincide with the same quantities known in random matrix theory from the study of ensembles interpolating between the orthogonal and symplectic universality classes at the soft edge, the interpolation being due to a rank 1 perturbation.Comment: 27 pages, 1 figure, minor corrections mad

    Random Matrix Theory and the Sixth Painlev\'e Equation

    Full text link
    A feature of certain ensembles of random matrices is that the corresponding measure is invariant under conjugation by unitary matrices. Study of such ensembles realised by matrices with Gaussian entries leads to statistical quantities related to the eigenspectrum, such as the distribution of the largest eigenvalue, which can be expressed as multidimensional integrals or equivalently as determinants. These distributions are well known to be τ\tau-functions for Painlev\'e systems, allowing for the former to be characterised as the solution of certain nonlinear equations. We consider the random matrix ensembles for which the nonlinear equation is the σ\sigma form of \PVI. Known results are reviewed, as is their implication by way of series expansions for the distributions. New results are given for the boundary conditions in the neighbourhood of the fixed singularities at t=0,1,t=0,1,\infty of σ\sigma\PVI displayed by a generalisation of the generating function for the distributions. The structure of these expansions is related to Jimbo's general expansions for the τ\tau-function of σ\sigma\PVI in the neighbourhood of its fixed singularities, and this theory is itself put in its context of the linear isomonodromy problem relating to \PVI.Comment: Dedicated to the centenary of the publication of the Painlev\'e VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    Stigma in youth with Tourette's syndrome: a systematic review and synthesis

    Get PDF
    Tourette's syndrome (TS) is a childhood onset neurodevelopmental disorder, characterised by tics. To our knowledge, no systematic reviews exist which focus on examining the body of literature on stigma in association with children and adolescents with TS. The aim of the article is to provide a review of the existing research on (1) social stigma in relation to children and adolescents with TS, (2) self-stigma and (3) courtesy stigma in family members of youth with TS. Three electronic databases were searched: PsycINFO, PubMed and Web of Science. Seventeen empirical studies met the inclusion criteria. In relation to social stigma in rating their own beliefs and behavioural intentions, youth who did not have TS showed an unfavourable attitude towards individuals with TS in comparison to typically developing peers. Meanwhile, in their own narratives about their lives, young people with TS themselves described some form of devaluation from others as a response to their disorder. Self-degrading comments were denoted in a number of studies in which the children pointed out stereotypical views that they had adopted about themselves. Finally, as regards courtesy stigma, parents expressed guilt in relation to their children's condition and social alienation as a result of the disorder. Surprisingly, however, there is not one study that focuses primarily on stigma in relation to TS and further studies that examine the subject from the perspective of both the 'stigmatiser' and the recipient of stigma are warranted

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page
    corecore