3,308 research outputs found

    Gravitational and electromagnetic emission by magnetized coalescing binary systems

    Full text link
    We discuss the possibility to obtain an electromagnetic emission accompanying the gravitational waves emitted in the coalescence of a compact binary system. Motivated by the existence of black hole configurations with open magnetic field lines along the rotation axis, we consider a magnetic dipole in the system, the evolution of which leads to (i) electromagnetic radiation, and (ii) a contribution to the gravitational radiation, the luminosity of both being evaluated. Starting from the observations on magnetars, we impose upper limits for both the electromagnetic emission and the contribution of the magnetic dipole to the gravitational wave emission. Adopting this model for the evolution of neutron star binaries leading to short gamma ray bursts, we compare the correction originated by the electromagnetic field to the gravitational waves emission, finding that they are comparable for particular values of the magnetic field and of the orbital radius of the binary system. Finally we calculate the electromagnetic and gravitational wave energy outputs which result comparable for some values of magnetic field and radius.Comment: 9 pages, 3 figures, to appear in Astroph. Sp.Scienc

    Coalescing binaries as possible standard candles

    Full text link
    Gravitational waves detected from well-localized inspiraling binaries would allow to determine, directly and independently, both binary luminosity and redshift. In this case, such systems could behave as "standard candles" providing an excellent probe of cosmic distances up to z<0.1z <0.1 and thus complementing other indicators of cosmological distance ladder.Comment: 6 pages, 5 figures. accepted in Astroparticle Physic

    FULL AND PERFORATED METAL PLATE SHEAR WALLS AS BRACING SYSTEMS FOR SEISMIC UPGRADING OF EXISTING RC BUILDINGS

    Get PDF
    Metal Plate Shear Walls (MPSWs) represent an effective, practical and economical system for the seismic protection of existing RC framed buildings. They consist of one or more metallic thin plates, bolted or welded to a stiff steel frame, which are installed in the bays of RC framed structures. A case study of an existing RC residential 5-storey building, designed between the ‘60s and ‘70s of the last century and retrofitted with MPSWs, has been examined in this paper. The retrofitting design of the existing structure has been carried out by using four different MPSWs, namely three common full panels made of steel, low yield steel and aluminium and one innovative perforated steel plates. Finally, the used retrofitting solutions have been compared each to other in terms of performance and economic parameters, allowing to select the best intervention

    Ductility and Behaviour Factor of RC Frame - Perforated SPSW Dual Systems

    Get PDF
    In this paper the non-linear behaviour of dual seismic-resistant structures made of Reinforced Concrete Frames (RCF) and perforated Steel Plate Shear Walls (SPSWs) has been investigated. The starting point has been the numerical calibration by ABAQUS of an experimental test taken from literature on one-third scale three-storey RCF with infill SPSWs subjected to monotonically increasing horizontal loading. Based on results of the implemented FEM model, three types of perforated SPSWs with different percentages and position of holes have been numerically analysed through static non-linear analyses. On the basis of numerical results achieved, by comparing each other the values of shear strength, behaviour factor and ductility of the tested specimens, it has been observed a significant improvement of the ductile behaviour of the RCF equipped with perforated SPSWs with respect to the one obtained for the RCF provided with traditional solid SPSWs. In addition, the dual systems given by RCF and perforated SPSWs have provided a shear strength reduction of 26%, 46% and 51% in comparison to that of the original RCF - solid SPSW composite system, when holes percentage equal to 13%, 40% and 42% have been considered, respectively. Finally, it has been noticed that behaviour factors of perforated specimens have been increased with increasing adjoining distance among holes.</jats:p

    Strip Model Analysis for Steel Plate Shear Walls in Earthquake Resistant Structures

    Get PDF
    Unstiffened Steel Plate Shear Walls (SPSWs) are very effective structural systems designed to resist lateral forces. SPSW systems consist of thin web plates infilled within frames of steel horizontal and vertical boundary elements. The thin unstiffened web plates are expected to buckle in shear and to develop diagonal tension field after buckling under the action of horizontal loads. For unstiffened steel plates, buckling in shear occurs in the elastic range at low stress levels. This behaviour provides strength, stiffness and ductility and allows to have an appropriate level of energy dissipation through tension yielding of the web plates. This paper assesses the inelastic structural response and behaviour of Steel Plate Shear Wall systems using both a modified strip model approach and a new simplified strip model for only beam connected SPSWs. Both models are developed with plasticity concentrated elements and the performed analyses include the nonlinear behaviour of strips, also considering the compressive forces effects over the strip model elements. This research indicates fundamental aspects of the seismic performance of Steel Plate Shear Wall systems, such as energy dissipation capacity, panel ductility demand, seismic inter-story drift and design load demands in Vertical Boundary Elements (VBE) and Horizontal Boundary Elements (HBE) of the frame. The results obtained from the use of these models are compared with selected experimental and numerical results to enrich the research conclusions.</jats:p

    The structure of the plasma sheet-lobe boundary in the Earth's magnetotail

    Get PDF
    The structure of the magnetotail plasma sheet-plasma lobe boundary was studied by observing the properties of tailward flowing O+ ion beams, detected by the ISEE 2 plasma experiment inside the boundary during three time periods. The computed value of the north-south electric field component as well as the O+ parameters are shown to change at the boundary. The results are related to other observations made in this region. The O+ parameters and the Ez component behavior are shown to be consistent with that expected from the topology of the electric field lines in the tail as mapped from the ionosphere

    Calibrating chemical multisensory devices for real world applications: An in-depth comparison of quantitative Machine Learning approaches

    Full text link
    Chemical multisensor devices need calibration algorithms to estimate gas concentrations. Their possible adoption as indicative air quality measurements devices poses new challenges due to the need to operate in continuous monitoring modes in uncontrolled environments. Several issues, including slow dynamics, continue to affect their real world performances. At the same time, the need for estimating pollutant concentrations on board the devices, espe- cially for wearables and IoT deployments, is becoming highly desirable. In this framework, several calibration approaches have been proposed and tested on a variety of proprietary devices and datasets; still, no thorough comparison is available to researchers. This work attempts a benchmarking of the most promising calibration algorithms according to recent literature with a focus on machine learning approaches. We test the techniques against absolute and dynamic performances, generalization capabilities and computational/storage needs using three different datasets sharing continuous monitoring operation methodology. Our results can guide researchers and engineers in the choice of optimal strategy. They show that non-linear multivariate techniques yield reproducible results, outperforming lin- ear approaches. Specifically, the Support Vector Regression method consistently shows good performances in all the considered scenarios. We highlight the enhanced suitability of shallow neural networks in a trade-off between performance and computational/storage needs. We confirm, on a much wider basis, the advantages of dynamic approaches with respect to static ones that only rely on instantaneous sensor array response. The latter have been shown to be best choice whenever prompt and precise response is needed
    corecore