680 research outputs found

    Vibration Induced Non-adiabatic Geometric Phase and Energy Uncertainty of Fermions in Graphene

    Full text link
    We investigate geometric phase of fermion states under relative vibrations of two sublattices in graphene by solving time-dependent Sch\"{o}dinger equation using Floquet scheme. In a period of vibration the fermions acquire different geometric phases depending on their momenta. There are two regions in the momentum space: the adiabatic region where the geometric phase can be approximated by the Berry phase and the chaotic region where the geometric phase drastically fluctuates in changing parameters. The energy of fermions due to vibrations shows spikes in the chaotic region. The results suggest a possible dephasing mechanism which may cause classical-like transport properties in graphene.Comment: 9 pages, 5 figure

    Rigorous derivation of coherent resonant tunneling time and velocity in finite periodic systems

    Full text link
    The velocity vresv_{res} of resonant tunneling electrons in finite periodic structures is analytically calculated in two ways. The first method is based on the fact that a transmission of unity leads to a coincidence of all still competing tunneling time definitions. Thus, having an indisputable resonant tunneling time Ď„res,\tau_{res}, we apply the natural definition vres=L/Ď„resv_{res}=L/\tau_{res} to calculate the velocity. For the second method we combine Bloch's theorem with the transfer matrix approach to decompose the wave function into two Bloch waves. Then the expectation value of the velocity is calculated. Both different approaches lead to the same result, showing their physical equivalence. The obtained resonant tunneling velocity vresv_{res} is smaller or equal to the group velocity times the magnitude of the complex transmission amplitude of the unit cell. Only at energies where the unit cell of the periodic structure has a transmission of unity vresv_{res} equals the group velocity. Numerical calculations for a GaAs/AlGaAs superlattice are performed. For typical parameters the resonant velocity is below one third of the group velocity.Comment: 12 pages, 3 figures, LaTe

    Localization of quantum wave packets

    Full text link
    We study the semiclassical propagation of squeezed Gau{\ss}ian states. We do so by considering the propagation theorem introduced by Combescure and Robert \cite{CR97} approximating the evolution generated by the Weyl-quantization of symbols HH. We examine the particular case when the Hessian H′′(Xt)H^{\prime\prime}(X_{t}) evaluated at the corresponding solution XtX_{t} of Hamilton's equations of motion is periodic in time. Under this assumption, we show that the width of the wave packet can remain small up to the Ehrenfest time. We also determine conditions for ``classical revivals'' in that case. More generally, we may define recurrences of the initial width. Some of these results include the case of unbounded classical motion. In the classically unstable case we recover an exponential spreading of the wave packet as in \cite{CR97}

    Variability of B and Be stars in the LMC/SMC: binaries and pulsations

    Get PDF
    To study the variability of the 523 B and Be stars observed in the Magellanic clouds with the VLT-FLAMES, we cross-matched the stars of our sample with the photometric database MACHO, which provides for each star an 8 years lightcurve. We searched for long, medium, and short-term periodicity and found the eclipsing binaries in our sample. For these stars, combining, spectroscopy and photometry, we were able to provide information on several systems of stars (systemic velocities, ratios of masses, etc). We also present the ratios of B-binaries to B-non binaries in the LMC/SMC in comparison with the MW. Note that this ratio is also an important issue to understand the mechanism of star-formation at low metallicity. We also found the first multiperiodic B and Be stars in the SMC, in particular the first SMC Beta Cep and SPB, while, according to the models, pulsations were not foreseen in low metallicity environments, i.e. typically in the SMC. Our results show that the instability strips are shifted towards higher temperatures in comparison with the Milky Way' strips of pulsating B-type stars. By the fact that we found more pulsating Be stars than pulsating B stars in the SMC, it seems that the fast rotation favours the presence of pulsations. However, the ratio of pulsating B-type stars to "non"-pulsating B-type stars at low metallicity is lower than at high metallicity.Comment: poster IAUS25

    Light propagation through closed-loop atomic media beyond the multiphoton resonance condition

    Get PDF
    The light propagation of a probe field pulse in a four-level double-lambda type system driven by laser fields that form a closed interaction loop is studied. Due to the finite frequency width of the probe pulse, a time-independent analysis relying on the multiphoton resonance assumption is insufficient. Thus we apply a Floquet decomposition of the equations of motion to solve the time-dependent problem beyond the multiphoton resonance condition. We find that the various Floquet components can be interpreted in terms of different scattering processes, and that the medium response oscillating in phase with the probe field in general is not phase-dependent. The phase dependence arises from a scattering of the coupling fields into the probe field mode at a frequency which in general differs from the probe field frequency. We thus conclude that in particular for short pulses with a large frequency width, inducing a closed loop interaction contour may not be advantageous, since otherwise the phase-dependent medium response may lead to a distortion of the pulse shape. Finally, using our time-dependent analysis, we demonstrate that both the closed-loop and the non-closed loop configuration allow for sub- and superluminal light propagation with small absorption or even gain. Further, we identify one of the coupling field Rabi frequencies as a control parameter that allows to conveniently switch between sub- and superluminal light propagation.Comment: 10 pages, 8 figure
    • …
    corecore