27 research outputs found

    Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    Get PDF
    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite infections

    Profile of Central and Effector Memory T Cells in the Progression of Chronic Human Chagas Disease

    Get PDF
    Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi that affects approximately 11 million people in Latin America. The involvement of the host's immune response on the development of severe forms of Chagas disease has not been fully elucidated. Studies on the immune response against T. cruzi infection show that the immunoregulatory mechanisms are necessary to prevent the deleterious effect of excessive immune response stimulation and consequently the fatal outcome of the disease. A recall response against parasite antigens observed in in vitro peripheral blood cell culture clearly demonstrates that memory response is generated during infection. Memory T cells are heterogeneous and differ in both the ability to migrate and exert their effector function. This heterogeneity is reflected in the definition of central (TCM) and effector memory (TEM) T cells. Our results suggest that a balance between regulatory and effectors T cells may be important for the progression and development of the disease. Furthermore, the high percentage of central memory CD4+ T cells in indeterminate patients after stimulation suggests that these cells may modulate host's inflammatory response by controlling cell migration to tissues and their effector role during chronic phase of the disease

    Interactions of Microbicide Nanoparticles with a Simulated Vaginal Fluid

    No full text
    The interaction with cervicovaginal mucus presents the potential to impact the performance of drug nanocarriers. These systems must migrate through this biological fluid in order to deliver their drug payload to the underlying mucosal surface. We studied the ability of dapivirine-loaded polycaprolactone (PCL)-based nanoparticles (NPs) to interact with a simulated vaginal fluid (SVF) incorporating mucin. Different surface modifiers were used to produce NPs with either negative (poloxamer 338 NF and sodium lauryl sulfate) or positive (cetyltrimethylammonium bromide) surface charge. Studies were performed using the mucin particle method, rheological measurements, and real-time multiple particle tracking. Results showed that SVF presented rheological properties similar to those of human cervicovaginal mucus. Analysis of NP transport indicated mild interactions with mucin and low adhesive potential. In general, negatively charged NPs underwent subdiffusive transport in SVF, i.e., hindered as compared to their diffusion in water, but faster than for positively charged NPs. These differences were increased when the pH of SVF was changed from 4.2 to 7.0. Diffusivity was 50- and 172-fold lower in SVF at pH 4.2 than in water for negatively charged and positively charged NPs, respectively. At pH 7.0, this decrease was around 20- and 385-fold, respectively. The estimated times required to cross a layer of SVF were equal to or lower than 1.7 h for negatively charged NPs, while for positively charged NPs these values were equal to or higher than 7 h. Overall, our results suggest that negatively charged PCL NPs may be suitable to be used as carriers in order to deliver dapivirine and potentially other antiretroviral drugs to the cervicovaginal mucosal lining. Also, they further reinforce the importance in characterizing the interactions of nanosystems with mucus fluids or surrogates when considering mucosal drug delivery

    Host records for the immature stages of the South American tick, Amblyomma fuscum (Acari: Ixodidae)

    No full text
    This work reports free-living opossums (Didelphis aurita and Didelphis albiventris) and a rodent species (Thrichomys laurentius) naturally infested by the immature stages of Amblyomma fuscum Neumann, 1907 in Brazil. Previously the only host record for the A. fuscum immature stages was for a single nymph collected on an opossum D. aurita in the state of Sâo Paulo. Herein are presented two new host records (D. albiventris and T. laurentius) for A. fuscum. Our results indicate that opossums (Didelphis spp.), and one small rodent species (T. laurentius) are major hosts for immature stages of A. fuscum in Brazil. Based on the known feeding habits of immature stages of A. fuscum, coupled with previous reports of the adult stage parasitizing humans, A. fuscum is a potential vector of spotted fever group rickettsia

    Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae)

    No full text
    The neotropical tick Amblyomma cajennense is a significant pest to domestic animals, the most frequently human-biting tick in South America and the main vector of Brazilian spotted fever (caused by Rickettsia rickettsii), a deadly human disease. The purpose of this study is to characterize the adult A. cajennense salivary gland transcriptome by expressed sequence tags (ESTs). We report the analysis of 1754 clones obtained from a cDNA library, which reveal mainly transcripts related to proteins involved in the hemostatic processes, especially proteases and their inhibitors. Remarkably, five types of possible serine protease inhibitors were found, including a molecule with a distinguished structure that contains repeats of the active motif of hirudin inhibitors. Besides, other components that may be active over the host immune system or acting as defensins against infecting microorganisms were also described, including a molecule similar to insect venom allergens. The conjunction of components from this transcriptome suggests a diverse strategy of A. cajennense tick during feeding, but emphasized in the coagulation syste

    Ticks infesting wildlife species in Northeastern Brazil with new host and locality records

    No full text
    From September 2008 to March 2010, 397 ticks (315 larvae, 33 nymphs, 23 females, and 26 males) were collected from captive and free-living wildlife species in northeastern Brazil. Six tick species were identified, including Amblyomma auricularium (Conil) on Tamandua tetradactyla (L), Amblyomma dubitatum Neumann on Hydrochaeris hydrochaeris (L.), Nectomys rattus (Pelzen) and T. tetradactyla, Amblyomma parvum Aragão on T. tetradactyla, Amblyomma rotundatum Koch on Boa constrictor L., Chelonoidis carbonaria (Spix), Kinosternon scorpioides (L.) and Rhinella jimi (Stevaux), Amblyomma varium Koch on Bradypus variegatus Schinz, and Rhipicephalus sanguineus (Latreille) on Lycalopex vetulus (Lund). Nectomys rattus and T. tetradactyla are new hosts for A. dubitatum. This study extends the known distribution of A. dubitatum in South America and provides evidence that its geographical range has been underestimated because of the lack of research. Four (A. dubitatum, A. parvum, A. rotundatum, and R. sanguineus) of six tick species identified in this study have previously been found on humans in South America, some of them being potentially involved in the transmission of pathogens of zoonotic concer
    corecore