32 research outputs found
DMD2010-3849 DESIGN OF AN ENDOSCOPE LENS SHIELDING DEVICE FOR USE IN LAPAROSCOPIC PROCEDURES
ABSTRACT In recent years, laparoscopic surgical procedures have revolutionized many gynecological and abdominal procedures, leading to dramatic reductions in recovery time and scarring for the patient. While techniques and instruments for performing laparoscopic surgery have improved over the years, loss of vision through the endoscopic lens caused by fog, liquid, and solid debris common to laparoscopic procedures remains a significant problem. In this paper, a shielding mechanism that maintains visibility through the laparoscope by removing debris from the distal end of the lens is presented. This device provides an inexpensive and convenient alternative to the current practice of removing, cleaning, and re-inserting the laparoscope during surgical procedures. This device is shown in multiple trials to repeatably remove debris from the distal tip of the lens, thereby restoring vision for the surgeon without requiring removal or reinsertion of the endoscope. INTRODUCTION Laparoscopic surgery provides a minimally invasive alternative to often-risky open procedures. Increasingly popular in recent years, laparoscopic surgery is currently used in many medical specialties, including urology, gynecology, and gastroenterolog
Distinguishing Signal From Autofluorescence In Cryogenic Correlated Light And Electron Microscopy Of Mammalian Cells
In cryogenic correlated light and electron microscopy (cryo-CLEM), frozen targets of interest are identified and located on EM grids by fluorescence microscopy and then imaged at higher resolution by cryo-EM. Whilst working with these methods, we discovered that a variety of mammalian cells exhibit strong punctate autofluorescence when imaged under cryogenic conditions (80K). Autofluorescence originated from multilamellar bodies (MLBs) and secretory granules. Here we describe a method to distinguish fluorescent protein tags from these autofluorescent sources based on the narrower emission spectrum of the former. The method is first tested on mitochondria and then applied to examine the ultrastructural variability of secretory granules within insulin-secreting pancreatic beta-cell-derived INS-1E cells
Cosmic neutrino background detection with PTOLEMY
The PTOLEMY experiment aims at detecting the cosmic neutrino background, generated approximately one second after the Big Bang, in accordance with Standard Cosmology. Given the extremely low energy of these neutrinos, reliable experimental detection can be accomplished through neutrino captures on beta-unstable nuclides, eliminating the need for a specific energy threshold. Tritium implanted on a carbon-based nanostructure emerges as a promising candidate among the various isotopes due to its favorable cross-section and low-endpoint energy. The Ptolemy collaboration plans to integrate a solid-state tritium source with a novel compact electro-magnetic filter, based on the dynamic transverse momentum cancellation concept. This filter will be employed in conjunction with an event-based preliminary radio-frequency preselection. The measurement of neutrino mass and the exploration of light sterile neutrinos represent additional outcomes stemming from the Ptolemy experiment’s physics potential, even when utilizing smaller or intermediate-scale detectors. To finalize the conceptualization of the detector, a demonstrator prototype will be assembled and tested at LNGS in 2024. This prototype aims at addressing the challenging aspects of the Ptolemy experimen
Recommended from our members
Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells
The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo–electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic β-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells
Nature conservation in Hillingdon A nature conservation strategy for London
SIGLEGBUnited Kingdo
How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications
This communication describes a simple, rapid and cost effective method of embedding a conductive and flexible material within microfluidic devices as a means to realize uniform electric fields within cellular microenvironments. Fluidic channels and electrodes are fabricated by traditional soft-lithography in conjunction with chemical etching of PDMS. Devices can be deformable (thus allowing for a combination of electro-mechanical stimulation), they are made from inexpensive materials and easily assembled by hand; this method is thus accessible to a wide range of laboratories and budgets
Recommended from our members
SPECIAL INTEREST GROUP on HERITAGE LANGUAGES-FALL NEWSLETTER
News on research and instruction in the world of heritage language educatio