44 research outputs found

    Self-diffusion of molecules in aqueous solutions of tetramethylurea

    Get PDF
    Solutions of tetramethylurea (I) in light and heavy water were studied by the proton spin echo method over a wide concentration range at different temperatures. The energies of self-diffusion activation for species in these systems were calculated. In the both systems, the lowest coefficient of self-diffusion and the highest energy of activation for all the temperatures studied (288 to 313 K) were found for its ∼20 mol % solution, which corresponds to a congruently melting compound in the solid phase and to maximum sound viscosity, density, and speed in aqueous solutions of tetramethylurea. The low-concentration range of compound I (from 1.2 to 5 mol %) proved to be featureless

    Rheology of liquid crystalline phases of alkyloxybenzylidene toluidines

    Get PDF
    A unique viscometer of the CS rheometer viscometer class designed at the Kazan State University of Technology is used to measure viscosities of two p-n-alkyloxybenzylidene-p-toluidines in the entire temperature range of the liquid crystalline state and transition into an isotropic liquid. The measured shear stresses and flow rates are used to calculate shear rates and plot flow and viscosity curves. The liquid crystalline phase and isotropic liquid are demonstrated to possess Newtonian viscosity, whose viscous flow activation parameters are calculated in the temperature range under study. The results are discussed from the standpoint of intermolecular interactions and structural details of the liquid crystalline phase. © 2010 Pleiades Publishing, Ltd

    A viscometric study of the liquid crystalline phase of alkyloxybenzoic acids

    Get PDF
    The viscosities of three benzoic acid derivatives (p-n-heptyloxy-, p-n-decyloxy-, and p-n-dodecyloxy-) were measured on a unique viscometer of the class of CS-rheometer-viscometers with controlled shear stress over the whole temperature range of the liquid crystalline state. Shear rates were calculated and flow and viscosity curves constructed from the experimental shear stress values taking into account the Rabinovich-Moony correction. The smectic and nematic phases were characterized by non-Newton and Newton viscosities, respectively, in all the samples studied. The activation parameters of viscous flow were calculated for Newton viscosity. The results are discussed in terms of intermolecular interactions and structural peculiarities of liquid crystalline phases. © 2009 Pleiades Publishing, Ltd

    De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptome sequencing data has become an integral component of modern genetics, genomics and evolutionary biology. However, despite advances in the technologies of DNA sequencing, such data are lacking for many groups of living organisms, in particular, many plant taxa. We present here the results of transcriptome sequencing for two closely related plant species. These species, <it>Fagopyrum esculentum </it>and <it>F. tataricum</it>, belong to the order Caryophyllales - a large group of flowering plants with uncertain evolutionary relationships. <it>F. esculentum </it>(common buckwheat) is also an important food crop. Despite these practical and evolutionary considerations <it>Fagopyrum </it>species have not been the subject of large-scale sequencing projects.</p> <p>Results</p> <p>Normalized cDNA corresponding to genes expressed in flowers and inflorescences of <it>F. esculentum </it>and <it>F. tataricum </it>was sequenced using the 454 pyrosequencing technology. This resulted in 267 (for <it>F. esculentum</it>) and 229 (<it>F. tataricum</it>) thousands of reads with average length of 341-349 nucleotides. <it>De novo </it>assembly of the reads produced about 25 thousands of contigs for each species, with 7.5-8.2× coverage. Comparative analysis of two transcriptomes demonstrated their overall similarity but also revealed genes that are presumably differentially expressed. Among them are retrotransposon genes and genes involved in sugar biosynthesis and metabolism. Thirteen single-copy genes were used for phylogenetic analysis; the resulting trees are largely consistent with those inferred from multigenic plastid datasets. The sister relationships of the Caryophyllales and asterids now gained high support from nuclear gene sequences.</p> <p>Conclusions</p> <p>454 transcriptome sequencing and <it>de novo </it>assembly was performed for two congeneric flowering plant species, <it>F. esculentum </it>and <it>F. tataricum</it>. As a result, a large set of cDNA sequences that represent orthologs of known plant genes as well as potential new genes was generated.</p

    Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions

    Full text link
    A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ρ0{\rho^0}). In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ρ0π+π{\rho^0\rightarrow\pi^+\pi^-} decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ρ0{\rho^0} travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions, and found to be 6.53±0.066.53\pm 0.06 fm (197Au^{197} {\rm Au }) and 7.29±0.087.29\pm 0.08 fm (238U^{238} {\rm U}), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of non-identical particles

    Observation of Global Spin Alignment of ϕ\phi and K0K^{*0} Vector Mesons in Nuclear Collisions

    Full text link
    The strong force, as one of the four fundamental forces at work in the universe, governs interactions of quarks and gluons, and binds together the atomic nucleus. Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distance scales on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely ϕ\phi and K0K^{*0}, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for ϕ\phi is unexpectedly large, while that for K0K^{*0} is consistent with zero. The observed spin-alignment pattern and magnitude for the ϕ\phi cannot be explained by conventional mechanisms, while a model with strong force fields accommodates the current data. This is the first time that the strong force field is experimentally supported as a key mechanism that leads to global spin alignment. We extract a quantity proportional to the intensity of the field of the strong force. Within the framework of the Standard Model, where the strong force is typically described in the quark and gluon language of Quantum Chromodynamics, the field being considered here is an effective proxy description. This is a qualitatively new class of measurement, which opens a new avenue for studying the behaviour of strong force fields via their imprint on spin alignment

    Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord

    Get PDF
    BACKGROUND: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. METHODOLOGY/PRINCIPAL FINDINGS: We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. CONCLUSIONS/SIGNIFICANCE: We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord

    A Functional Phylogenomic View of the Seed Plants

    Get PDF
    A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification

    Event-by-event correlations between Λ\Lambda (Λˉ\bar{\Lambda}) hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at sNN=27 GeV\sqrt{s_{\text{NN}}} = 27 \text{ GeV} from STAR

    Full text link
    Global polarizations (PP) of Λ\Lambda (Λˉ\bar{\Lambda}) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the Λ\Lambda and Λˉ\bar{\Lambda} global polarizations (ΔP=PΛPΛˉ<0\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance (Δn=NLNRNL+NR0\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0) between left- and right-handed Λ\Lambda (Λˉ\bar{\Lambda}) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator (Δγ\Delta\gamma) and parity-odd azimuthal harmonic observable (Δa1\Delta a_{1}). Measurements of ΔP\Delta P, Δγ\Delta\gamma, and Δa1\Delta a_{1} have not led to definitive conclusions concerning the CME or the magnetic field, and Δn\Delta n has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between Δn\Delta n and Δa1\Delta a_{1}, which is sensitive to chirality fluctuations, and correlation between ΔP\Delta P and Δγ\Delta\gamma sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.Comment: 10 pages, 10 figures; paper from the STAR Collaboratio

    Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    The polarization of Λ\Lambda and Λˉ\bar{\Lambda} hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN\sqrt{s_{NN}} = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pTp_T dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pTp_T dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.Comment: 6 pages, 5 figures, Published in Physical Review Letter
    corecore