2,249 research outputs found
Supersonic jet mixing enhancement by delta-tabs
The results of a continuing investigation of the effect of vortex generators, in the form of small tabs at the nozzle exit, on the evolution of a jet are reported. Primarily, tabs of triangular shape are considered, and the effect is studied up to an equivalent jet Mach number of 1.8. By changing the orientation of the tab with respect to the nozzle exit plane, streamwise vortex pairs of opposite sign were generated. This resulted in either an outward election of jet core fluid into the ambient or an inward indentation of the mixing layer into the core of the jet. A triangular shaped tab with its apex leaning downstream, referred to as a delta tab, was found to be the most effective in influencing the jet evolution. Two delta tabs, spaced 180 degrees apart, completely bifurcated the jet. Four delta tabs increased jet mixing substantially, more than by various other methods tried previously; the mass flux at fourteen jet diameters downstream from the nozzle increased by about 50 percent over that for the no tab case. The tabs were found to be effective in jets with laminar or turbulent boundary layers as well as in jets with low or high core turbulence intensities
Effect of tabs on the evolution of an axisymmetric jet
The effect of vortex generators, in the form of small tabs at the nozzle exit, on the evolution of an axisymmetric jet was investigated experimentally over a jet Mach number range of 0.34 to 1.81. The effects of one, two, and four tabs were studied in comparison with the corresponding case without a tab. Each tab introduced an indentation in the shear layer, apparently through the action of streamwise vortices which appeared to be of the trailing vortex type originating from the tips of the tab rather that of the necklace vortex type originating from the base of the tab. The resultant effect of two tabs, placed at diametrically opposite locations, was to essentially bifurcate the jet. The influence of the tabs was essentially the same at subsonic and supersonic conditions indicating that compressibility has little to do with the effect
Flow Measurements Using Particle Image Velocimetry in the Ultracompact Combustor
The potential for the ultracompact combustor (UCC) lie in future research to reduced fuel consumption and improved engine performance. Velocity measurements performed on the UCC test rig at the Air Force Institute of Technology revealed flow patterns and time-averaged turbulence statistics for data taken burning hydrogen fuel in a straight and a curved cavity vane configuration. Over an equivalence ratio from 0.7 to 1.5, the straight vane configuration showed spanwise velocity decreased linearly with distance from the cavity vane over the width of the main channel. Increasing the flow rates and holding the equivalence ratio and ratio of cavity to main airflow rates constant, flow velocities in the main channel showed an increase with the curved circumferential configuration but a decrease with the straight circumferential configuration. Turbulence intensity is expected to be a major contributing factor, specifically since measured at 15% and 21% in the main channel for the straight and curved configurations, respectively. The results also show how the radial vane cavity (RVC) created strong vorticity throughout the main flow supporting a recirculation zone for mixing. Peak vorticity occurred farthest from the cavity vane suggesting the angle of the radial vane cavity is effective in generating increasing flow rotation
An Experimental Investigation into the Effect of Flap Angles for a Piezo-Driven Wing
This article presents a comparison of results from six degree of freedom force and moment measurements and Particle Image Velocimetry (PIV) data taken on the Air Force Institute of Technology\u27s (AFIT) piezoelectrically actuated, biomimetically designed Hawkmoth, Manduca Sexta, class engineered wing, at varying amplitudes and flapping frequencies, for both trimmed and asymmetric flapping conditions to assess control moment changes. To preserve test specimen integrity, the wing was driven at a voltage amplitude 50% below the maximum necessary to achieve the maximal Hawkmoth total stroke angle. 86 and 65 stroke angles were achieved for the trimmed and asymmetric tests respectively. Flapping tests were performed at system structural resonance, and at 10% off system resonance at a single amplitude, and PZT power consumption was calculated for each test condition. Two-dimensional PIV visualization measurements were taken transverse to the wing planform, recorded at the mid-span, for a single frequency and amplitude setting, for both trimmed and asymmetric flapping to correlate with the 6-DoF balance data. Linear velocity data was extracted from the 2-D PIV imagery at 1/2 and 1 chord locations above and below the wing, and the mean velocities were calculated for four separate wing phases during the flap cycle. The mean forces developed during a flap cycle were approximated using a modification of the Rankine-Froude axial actuator disk model to calculate the transport of momentum flux as a measure of vertical thrust produced during a static hover flight condition. Values of vertical force calculated from the 2-D PIV measurements were within 20% of the 6-DOF force balance experiments. Power calculations confirmed flapping at system resonance required less power than at off resonance frequencies, which is a critical finding necessary for future vehicle design considerations
Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range
Author Posting. © Acoustical Society of America, 2011. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 130 (2011): 1173-1187, doi:10.1121/1.3605565.A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones).Grants from the Office of Naval Research funded this
work. Use of the vessels Ocean Researcher I and Ocean
Researcher II in this experiment was funded by the Taiwan
National Science Council
On the elliptic nonabelian Fourier transform for unipotent representations of p-adic groups
In this paper, we consider the relation between two nonabelian Fourier
transforms. The first one is defined in terms of the Langlands-Kazhdan-Lusztig
parameters for unipotent elliptic representations of a split p-adic group and
the second is defined in terms of the pseudocoefficients of these
representations and Lusztig's nonabelian Fourier transform for characters of
finite groups of Lie type. We exemplify this relation in the case of the p-adic
group of type G_2.Comment: 17 pages; v2: several minor corrections, references added; v3:
corrections in the table with unipotent discrete series of G
Extensions of tempered representations
Let be irreducible tempered representations of an affine Hecke
algebra H with positive parameters. We compute the higher extension groups
explicitly in terms of the representations of analytic
R-groups corresponding to and . The result has immediate
applications to the computation of the Euler-Poincar\'e pairing ,
the alternating sum of the dimensions of the Ext-groups. The resulting formula
for is equal to Arthur's formula for the elliptic pairing of
tempered characters in the setting of reductive p-adic groups. Our proof
applies equally well to affine Hecke algebras and to reductive groups over
non-archimedean local fields of arbitrary characteristic. This sheds new light
on the formula of Arthur and gives a new proof of Kazhdan's orthogonality
conjecture for the Euler-Poincar\'e pairing of admissible characters.Comment: This paper grew out of "A formula of Arthur and affine Hecke
algebras" (arXiv:1011.0679). In the second version some minor points were
improve
Flow Measurements Using Particle Image Velocimetry in the Ultracompact Combustor
The potential for the ultracompact combustor (UCC) lie in future research to reduced fuel consumption and improved engine performance. Velocity measurements performed on the UCC test rig at the Air Force Institute of Technology revealed flow patterns and time-averaged turbulence statistics for data taken burning hydrogen fuel in a straight and a curved cavity vane configuration. Over an equivalence ratio from 0.7 to 1.5, the straight vane configuration showed spanwise velocity decreased linearly with distance from the cavity vane over the width of the main channel. Increasing the flow rates and holding the equivalence ratio and ratio of cavity to main airflow rates constant, flow velocities in the main channel showed an increase with the curved circumferential configuration but a decrease with the straight
circumferential configuration. Turbulence intensity is expected to be a major contributing factor, specifically since measured at 15% and 21% in the main channel for the straight and curved configurations, respectively. The results also show how the radial vane cavity (RVC) created strong vorticity throughout the main flow supporting a recirculation zone for mixing. Peak vorticity occurred farthest from the cavity vane suggesting the angle of the radial vane cavity is effective in generating increasing flow rotation
Half Life of the Doubly-magic r-Process Nucleus 78Ni
Nuclei with magic numbers serve as important benchmarks in nuclear theory. In
addition, neutron-rich nuclei play an important role in the astrophysical rapid
neutron-capture process (r-process). 78Ni is the only doubly-magic nucleus that
is also an important waiting point in the r-process, and serves as a major
bottleneck in the synthesis of heavier elements. The half-life of 78Ni has been
experimentally deduced for the first time at the Coupled Cyclotron Facility of
the National Superconducting Cyclotron Laboratory at Michigan State University,
and was found to be 110 (+100 -60) ms. In the same experiment, a first
half-life was deduced for 77Ni of 128 (+27 -33) ms, and more precise half-lives
were deduced for 75Ni and 76Ni of 344 (+20 -24) ms and 238 (+15 -18) ms
respectively.Comment: 4 pages, 3 figure
Recommended from our members
STALK users guide
STALK is a system that models molecular docking between two proteins. A problem is posed as an optimization problem where the objective is to minimize the free energy of the molecular system by maximizing the intermolecular interaction energy between the molecules. The possible number of conformations between the two molecules can be very large. A parallel genetic algorithm (GA) is used to explore the conformation space and identify the low-energy molecular configurations. The CAVE, a virtual reality environment, can be used to visualize and interact with the systems while it is executing
- …