4,969 research outputs found

    Pre-logarithmic and logarithmic fields in a sandpile model

    Full text link
    We consider the unoriented two-dimensional Abelian sandpile model on the half-plane with open and closed boundary conditions, and relate it to the boundary logarithmic conformal field theory with central charge c=-2. Building on previous results, we first perform a complementary lattice analysis of the operator effecting the change of boundary condition between open and closed, which confirms that this operator is a weight -1/8 boundary primary field, whose fusion agrees with lattice calculations. We then consider the operators corresponding to the unit height variable and to a mass insertion at an isolated site of the upper half plane and compute their one-point functions in presence of a boundary containing the two kinds of boundary conditions. We show that the scaling limit of the mass insertion operator is a weight zero logarithmic field.Comment: 18 pages, 9 figures. v2: minor corrections + added appendi

    Conformal field theory correlations in the Abelian sandpile mode

    Full text link
    We calculate all multipoint correlation functions of all local bond modifications in the two-dimensional Abelian sandpile model, both at the critical point, and in the model with dissipation. The set of local bond modifications includes, as the most physically interesting case, all weakly allowed cluster variables. The correlation functions show that all local bond modifications have scaling dimension two, and can be written as linear combinations of operators in the central charge -2 logarithmic conformal field theory, in agreement with a form conjectured earlier by Mahieu and Ruelle in Phys. Rev. E 64, 066130 (2001). We find closed form expressions for the coefficients of the operators, and describe methods that allow their rapid calculation. We determine the fields associated with adding or removing bonds, both in the bulk, and along open and closed boundaries; some bond defects have scaling dimension two, while others have scaling dimension four. We also determine the corrections to bulk probabilities for local bond modifications near open and closed boundaries.Comment: 13 pages, 5 figures; referee comments incorporated; Accepted by Phys. Rev.

    Boundary conditions and defect lines in the Abelian sandpile model

    Full text link
    We add a defect line of dissipation, or crack, to the Abelian sandpile model. We find that the defect line renormalizes to separate the two-dimensional plane into two half planes with open boundary conditions. We also show that varying the amount of dissipation at a boundary of the Abelian sandpile model does not affect the universality class of the boundary condition. We demonstrate that a universal coefficient associated with height probabilities near the defect can be used to classify boundary conditions.Comment: 8 pages, 1 figure; suggestions from referees incorporated; to be published in Phys. Rev.

    Spiral model, jamming percolation and glass-jamming transitions

    Full text link
    The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with D.S. Fisher [8,9]. They provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [5] for rigorous proofs. We also show that our arguments for SM does not need any modification contrary to recent claims of Jeng and Schwarz [10].Comment: 9 pages, 7 figures, proceedings for StatPhys2

    CMS endcap RPC gas gap production for upgrade

    Get PDF
    The CMS experiment will install a RE4 layer of 144 new Resistive Plate Chambers (RPCs) on the existing york YE3 at both endcap regions to trigger high momentum muons from the proton-proton interaction. In this paper, we present the detailed procedures used in the production of new RPC gas gaps adopted in the CMS upgrade. Quality assurance is enforced as ways to maintain the same quality of RPC gas gaps as the existing 432 endcap RPC chambers that have been operational since the beginning of the LHC operation

    Height variables in the Abelian sandpile model: scaling fields and correlations

    Get PDF
    We compute the lattice 1-site probabilities, on the upper half-plane, of the four height variables in the two-dimensional Abelian sandpile model. We find their exact scaling form when the insertion point is far from the boundary, and when the boundary is either open or closed. Comparing with the predictions of a logarithmic conformal theory with central charge c=-2, we find a full compatibility with the following field assignments: the heights 2, 3 and 4 behave like (an unusual realization of) the logarithmic partner of a primary field with scaling dimension 2, the primary field itself being associated with the height 1 variable. Finite size corrections are also computed and successfully compared with numerical simulations. Relying on these field assignments, we formulate a conjecture for the scaling form of the lattice 2-point correlations of the height variables on the plane, which remain as yet unknown. The way conformal invariance is realized in this system points to a local field theory with c=-2 which is different from the triplet theory.Comment: 68 pages, 17 figures; v2: published version (minor corrections, one comment added

    On the study of jamming percolation

    Full text link
    We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and time scales. The models we investigate have constraints similar to that of the knights model, introduced by Toninelli, Biroli, and Fisher (TBF), but differing neighbor relations. We find that such knights-like models, otherwise known as models of jamming percolation, need a ``No Parallel Crossing'' rule for the TBF proof of a glassy transition to be valid. Furthermore, most knight-like models fail a ``No Perpendicular Crossing'' requirement, and thus need modification to be made rigorous. We also show how the ``No Parallel Crossing'' requirement can be used to evaluate the provable glassiness of other correlated percolation models, by looking at models with more stable directions than the knights model. Finally, we show that the TBF proof does not generalize in any straightforward fashion for three-dimensional versions of the knights-like models.Comment: 13 pages, 18 figures; Spiral model does satisfy property

    Lifshitz transition and van Hove singularity in a Topological Dirac Semimetal

    Full text link
    A topological Dirac semimetal is a novel state of quantum matter which has recently attracted much attention as an apparent 3D version of graphene. In this paper, we report critically important results on the electronic structure of the 3D Dirac semimetal Na3Bi at a surface that reveals its nontrivial groundstate. Our studies, for the first time, reveal that the two 3D Dirac cones go through a topological change in the constant energy contour as a function of the binding energy, featuring a Lifshitz point, which is missing in a strict 3D analog of graphene (in other words Na3Bi is not a true 3D analog of graphene). Our results identify the first example of a band saddle point singularity in 3D Dirac materials. This is in contrast to its 2D analogs such as graphene and the helical Dirac surface states of a topological insulator. The observation of multiple Dirac nodes in Na3Bi connecting via a Lifshitz point along its crystalline rotational axis away from the Kramers point serves as a decisive signature for the symmetry-protected nature of the Dirac semimetal's topological groundstate.Comment: 5 pages, 4 Figures, Related papers on topological Fermi arcs and Weyl Semimetals (WSMs) are at http://physics.princeton.edu/zahidhasangroup/index.htm
    • …
    corecore