80 research outputs found

    Association between individual level characteristics and take-up of a Minimum Income Guarantee for Pensioners: Panel Data Analysis using data from the British Household Panel survey 1999–2002

    Get PDF
    \ua9 2024 The AuthorsA Minimum Income Guarantee (MIG) ensures people have a minimum amount of income for essentials such as healthy food, housing, health care, social and digital networks to support health and well-being. MIGs could be a useful tool to reduce inequalities. A MIG will only be effective if those who are eligible take it up. The aim of this paper is to explore how individual characteristics were associated with take-up of a MIG for pensioners (aged 60+ for women and aged 65+ for men) in England. The data used is from the British Household Panel Survey including 9430 observations from 1893 people, from 1999 to 2002. We estimated a random effects logistic regression. Results show that women were less likely to claim than men (OR ranging from 0.17 [95% CI 0.10–0.29]-0.73 [95% CI 0.40–1.34]), and couples were less likely to claim (OR ranging from 0.04 [95% CI 0.03–0.06]-0.01 [95%CI 0.01–0.02]) than single person households. People with better mental health (OR 1.05 95% CI 1.02–1.08), older pensioners (75+) (OR ranging from 1.98 [95% CI 1.52–2.59]-2.81 [95%CI 2.16–3.67]), those who were registered disabled (OR 4.03 95% CI 2.50–6.52), and those with no formal qualification (OR ranging from 1.74 [95%CI 0.93–3.26]-2.07 [95% CI 1.22–3.51]) were more likely to claim. Understanding who is likely to claim MIGs is important to avoid social security policy inadvertently increasing inequalities

    A ligand-based system for receptor-specific delivery of proteins

    Get PDF
    Gene delivery using vector or viral-based methods is often limited by technical and safety barriers. A promising alternative that circumvents these shortcomings is the direct delivery of proteins into cells. Here we introduce a non-viral, ligand-mediated protein delivery system capable of selectively targeting primary skin cells in-vivo. Using orthologous self-labelling tags and chemical cross-linkers, we conjugate large proteins to ligands that bind their natural receptors on the surface of keratinocytes. Targeted CRE-mediated recombination was achieved by delivery of ligand cross-linked CRE protein to the skin of transgenic reporter mice, but was absent in mice lacking the ligand\u2019s cell surface receptor. We further show that ligands mediate the intracellular delivery of Cas9 allowing for CRISPR-mediated gene editing in the skin more efficiently than adeno-associated viral gene delivery. Thus, a ligand-based system enables the effective and receptor-specific delivery of large proteins and may be applied to the treatment of skin-related genetic diseases

    Analysing trajectories of a longitudinal exposure: A causal perspective on common methods in lifecourse research

    Get PDF
    Longitudinal data is commonly analysed to inform prevention policies for diseases that may develop throughout life. Commonly methods interpret the longitudinal data as a series of discrete measurements or as continuous patterns. Some of the latter methods condition on the outcome, aiming to capture ‘average’ patterns within outcome groups, while others capture individual-level pattern features before relating these to the outcome. Conditioning on the outcome may prevent meaningful interpretation. Repeated measurements of a longitudinal exposure (weight) and later outcome (glycated haemoglobin levels) were simulated to match three scenarios: one with no causal relationship between growth rate and glycated haemoglobin; two with a positive causal effect of growth rate on glycated haemoglobin. Two methods that condition on the outcome and one that did not were applied to the data in 1000 simulations. The interpretation of the two-step method matched the simulation in all causal scenarios, but that of the methods conditioning on the outcome did not. Methods that condition on the outcome do not accurately represent a causal relationship between a longitudinal pattern and outcome. Researchers considering longitudinal data should carefully determine if they wish to analyse longitudinal data as a series of discrete time points or by extracting pattern features

    Importance of Non-Selective Cation Channel TRPV4 Interaction with Cytoskeleton and Their Reciprocal Regulations in Cultured Cells

    Get PDF
    BACKGROUND: TRPV4 and the cellular cytoskeleton have each been reported to influence cellular mechanosensitive processes as well as the development of mechanical hyperalgesia. If and how TRPV4 interacts with the microtubule and actin cytoskeleton at a molecular and functional level is not known. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the interaction of TRPV4 with cytoskeletal components biochemically, cell biologically by observing morphological changes of DRG-neurons and DRG-neuron-derived F-11 cells, as well as functionally with calcium imaging. We find that TRPV4 physically interacts with tubulin, actin and neurofilament proteins as well as the nociceptive molecules PKCepsilon and CamKII. The C-terminus of TRPV4 is sufficient for the direct interaction with tubulin and actin, both with their soluble and their polymeric forms. Actin and tubulin compete for binding. The interaction with TRPV4 stabilizes microtubules even under depolymerizing conditions in vitro. Accordingly, in cellular systems TRPV4 colocalizes with actin and microtubules enriched structures at submembranous regions. Both expression and activation of TRPV4 induces striking morphological changes affecting lamellipodial, filopodial, growth cone, and neurite structures in non-neuronal cells, in DRG-neuron derived F11 cells, and also in IB4-positive DRG neurons. The functional interaction of TRPV4 and the cytoskeleton is mutual as Taxol, a microtubule stabilizer, reduces the Ca2+-influx via TRPV4. CONCLUSIONS AND SIGNIFICANCE: TRPV4 acts as a regulator for both, the microtubule and the actin. In turn, we describe that microtubule dynamics are an important regulator of TRPV4 activity. TRPV4 forms a supra-molecular complex containing cytoskeletal proteins and regulatory kinases. Thereby it can integrate signaling of various intracellular second messengers and signaling cascades, as well as cytoskeletal dynamics. This study points out the existence of cross-talks between non-selective cation channels and cytoskeleton at multiple levels. These cross talks may help us to understand the molecular basis of the Taxol-induced neuropathic pain development commonly observed in cancer patients

    Kontaktmethoden

    No full text

    Nerve growth factor-mediated photoablation of nociceptors reduces pain behavior in mice

    No full text
    Nerve growth factor (NGF) and its receptors TrkA and p75 play a key role in the development and function of peripheral nociceptive neurons. Here, we describe novel technology to selectively photoablate TrkA-positive nociceptors through delivery of a phototoxic agent coupled to an engineered NGF ligand and subsequent near-infrared illumination. We demonstrate that this approach allows for on demand and localized reversal of pain behaviors in mouse models of acute, inflammatory, neuropathic, and joint pain. To target peripheral nociceptors, we generated a SNAP-tagged NGF derivative NGFR121W that binds to TrkA/p75 receptors but does not provoke signaling in TrkA-positive cells or elicit pain behaviors in mice. NGFR121W-SNAP was coupled to the photosensitizer IRDye700DX phthalocyanine (IR700) and injected subcutaneously. After near-infrared illumination of the injected area, behavioral responses to nociceptive mechanical and sustained thermal stimuli, but not innocuous stimuli, were substantially reduced. Similarly, in models of inflammatory, osteoarthritic, and neuropathic pain, mechanical hypersensitivity was abolished for 3 weeks after a single treatment regime. We demonstrate that this loss of pain behavior coincides with the retraction of neurons from the skin which then reinnervate the epidermis after 3 weeks corresponding with the return of mechanical hypersensitivity. Thus NGFR121W-SNAP-mediated photoablation is a minimally invasive approach to reversibly silence nociceptor input from the periphery, and control pain and hypersensitivity to mechanical stimuli

    The assessment of round lytic lesions in sternotomies

    No full text
    corecore