3,587 research outputs found

    Static Einstein-Maxwell Solutions in 2+1 dimensions

    Get PDF
    We obtain the Einstein-Maxwell equations for (2+1)-dimensional static space-time, which are invariant under the transformation q0=i q2,q2=i q0,α⇌γq_0=i\,q_2,q_2=i\,q_0,\alpha \rightleftharpoons \gamma. It is shown that the magnetic solution obtained with the help of the procedure used in Ref.~\cite{Cataldo}, can be obtained from the static BTZ solution using an appropriate transformation. Superpositions of a perfect fluid and an electric or a magnetic field are separately studied and their corresponding solutions found.Comment: 8 pages, LaTeX, no figures, to appear in Physical Review

    Stability of a hard-sphere binary quasicrystal

    Full text link
    The stability of a quasicrystalline structure, recently obtained in a molecular-dynamics simulation of rapid cooling of a binary melt, is analyzed for binary hard-sphere mixtures within a density-functional approach. It is found that this quasicrystal is metastable relative to crystalline and fluid phases for diameter ratios above 0.83. Such trend is partially reversed for lower diameter ratios, since the quasicrystal becomes stable with respect to the crystal but does not reach a coexistence with the fluid.Comment: 14 pages, 6 eps figures included. Revised version to appear in Phil. Mag.

    All Static Circularly Symmetric Perfect Fluid Solutions of 2+1 Gravity

    Get PDF
    Via a straightforward integration of the Einstein equations with cosmological constant, all static circularly symmetric perfect fluid 2+1 solutions are derived. The structural functions of the metric depend on the energy density, which remains in general arbitrary. Spacetimes for fluids fulfilling linear and polytropic state equations are explicitly derived; they describe, among others, stiff matter, monatomic and diatomic ideal gases, nonrelativistic degenerate fermions, incoherent and pure radiation. As a by--product, we demonstrate the uniqueness of the constant energy density perfect fluid within the studied class of metrics. A full similarity of the perfect fluid solutions with constant energy density of the 2+1 and 3+1 gravities is established.Comment: revtex4, 8 page

    Policy Support Within a Target Group: The Case of School Desegregation

    Get PDF
    This study empirically tests three theoretical approaches to explaining specific support for a policy output among members of its target group. The utilitarian model posits support as a function of objective costs and benefits to the individual stemming directly from the policy. The attitudinal model relates specific support to diffuse predispositions rooted in socialization. The perceptual model holds that specific support derives from beliefs about the character of the political decision process by which the policy was formulated. Tests of these three approaches are based on survey data on specific support for school district desegregation plans among a large sample of black and white parents of public school children in Florida. In both subsamples, the utilitarian approach explained very little of the variance in support, but the attitudinal and perceptual models were corroborated. Implications of these findings are drawn for desegregation policy making and for public policy theory

    Policy Support Within a Target Group: The Case of School Desegregation

    Get PDF
    This study empirically tests three theoretical approaches to explaining specific support for a policy output among members of its target group. The utilitarian model posits support as a function of objective costs and benefits to the individual stemming directly from the policy. The attitudinal model relates specific support to diffuse predispositions rooted in socialization. The perceptual model holds that specific support derives from beliefs about the character of the political decision process by which the policy was formulated. Tests of these three approaches are based on survey data on specific support for school district desegregation plans among a large sample of black and white parents of public school children in Florida. In both subsamples, the utilitarian approach explained very little of the variance in support, but the attitudinal and perceptual models were corroborated. Implications of these findings are drawn for desegregation policy making and for public policy theory

    Effects of defoliation at fruit set on vine physiology and berry composition in cabernet sauvignon grapevines

    Get PDF
    Grapevine canopy defoliation is a fundamentally important technique for the productivity and quality of grapes. Leaf removal is a pivotal operation on high-density vines which aims to improve air circulation, light exposure, and leaf gas exchange. The effects of leaf removal (LR) on vine physiology and berry composition in Cabernet Sauvignon grapevines were studied during the 2018–2019 growing season in the Bolgheri area, Tuscany, Italy. The basal leaves were removed at fruit set at two severity levels (removal of four basal leaves of each shoot (LR4) and removal of eight basal leaves (LR8)). The two treatments were compared with the not defoliated control (CTRL). The following physiological parameters of vines were measured: leaf gas exchange, leaf water potential, chlorophyll fluorescence and indirect chlorophyll content. The results showed that defoliation increased single leaf photosynthesis. In addition, qualitative grape parameters (phenolic and technological analyses) and daytime and night-time berry temperature were studied. The results showed that leaf removal had an impact on total soluble solids (°Brix), titratable acidity, and pH. The LR8-treated grapes had higher titratable acidity, while those in the LR4 treatment had higher °Brix and extractable anthocyanin and polyphenol content. Berry weight was not significantly influenced by the timing and severity of basal defoliation. Therefore, this research aims to investigate the effects of defoliation at the fruit set on vines performance

    Calpain restrains the stem cells compartment in breast cancer

    Get PDF
    CAPNS1 is essential for the stability and function of ubiquitous CAPN1 and CAPN2. Calpain modulates by proteolytic cleavage many cellular substrates and its activity is often deregulated in cancer cells, therefore calpain inhibition has been proposed as a therapeutical strategy for a number of malignancies. Here we show that CAPNS1 depletion is coupled to impairment of MCF7 and MCF10AT cell lines growth on plate and defective architecture of mammary acini derived from MCF10A cells. In soft agar CAPNS1 depletion leads to cell growth increase in MCF7, and decrease in MCF10AT cells. In both MCF7 and MCF10AT, CAPNS1 depletion leads to the enlargement of the stem cell compartment, as demonstrated by mammosphere formation assays and evaluation of stem cell markers by means of FACS and western blot analysis. Accordingly, activation of calpain by thapsigargin treatment leads to a decrease in the stem cell reservoir. The expansion of the cancer stem cell population in CAPNS1 depleted cells is coupled to a defective shift from symmetric to asymmetric division during mammosphere growth coupled to a decrease in NUMB protein level

    Stability of the hard-sphere icosahedral quasilattice

    Get PDF
    The stability of the hard-sphere icosahedral quasilattice is analyzed using the differential formulation of the generalized effective liquid approximation. We find that the icosahedral quasilattice is metastable with respect to the hard-sphere crystal structures. Our results agree with recent findings by McCarley and Ashcroft [Phys. Rev. B {\bf 49}, 15600 (1994)] carried out using the modified weighted density approximation.Comment: 15 pages, 2 figures available from authors upon request, (revtex), submitted to Phys. Rev.
    • …
    corecore