10,788 research outputs found

    Suitable classification of mortars from ancient roman and renaissance frescoes using thermal analysis and chemometrics

    Get PDF
    Background Literature on mortars has mainly focused on the identification and characterization of their components in order to assign them to a specific historical period, after accurate classification. For this purpose, different analytical techniques have been proposed. Aim of the present study was to verify whether the combination of thermal analysis and chemometric methods could be used to obtain a fast but correct classification of ancient mortar samples of different ages (Roman era and Renaissance). Results Ancient Roman frescoes from Museo Nazionale Romano (Terme di Diocleziano, Rome, Italy) and Renaissance frescoes from Sistine Chapel and Old Vatican Rooms (Vatican City) were analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). Principal Component analysis (PCA) on the main thermal data evidenced the presence of two clusters, ascribable to the two different ages. Inspection of the loadings allowed to interpret the observed differences in terms of the experimental variables. Conclusions PCA allowed differentiating the two kinds of mortars (Roman and Renaissance frescoes), and evidenced how the ancient Roman samples are richer in binder (calcium carbonate) and contain less filler (aggregate) than the Renaissance ones. It was also demonstrated how the coupling of thermoanalytical techniques and chemometric processing proves to be particularly advantageous when a rapid and correct differentiation and classification of cultural heritage samples of various kinds or ages has to be carried out

    Mechanical behaviour with temperatures of aluminum matrix composites with CNTs

    Get PDF
    Aluminum is a very useful structural metal employed in different industrial sectors, in particular it is used in large quantities in automotive, aeronautic and nautical industries. The main reasons of its wide use are: a very good oxidation resistance, excellent ductility, low melting temperature (660 °C) and low density (2.71 g/cm3). However, in order to reduce the emissions and fuel consumption is necessary to reduce the overall weight of vehicles by increasing mechanical properties of the structural material. The improvement of mechanical properties is normally achieved through use of reinforcement in materials, used like matrix, in order to improve some specific characteristics. In this work composites of carbon nanotubes (CNTs) dispersed in aluminum were made. The most difficulties in the preparation of this type of composite are represented by the low wettability between metallic matrix and fillers and the possibility of the oxidation of metal during melting with consequent decreasing of mechanical proprieties. The composite was obtained by three consecutive step: the first one is the functionalization of fillers surface to improve the fillers dispersion, the second one is the dispersion of fillers in the matrix by powder mixing and the third one is the melting and casting of the mix prepared. In particular, fillers used are multi walled carbon nanotubes (MWCNTs) with functionalized surface by treatment with a solfonitric solution. Melting and casting are carried out with the aid of an induction furnace with a controlled atmosphere system and centrifugal casting. Argon is the inert gas used to prevent the oxidation of aluminium during fusion. Young’s modulus was evaluated at different temperature and correlated with the different CNTs percentage. The dispersion rate of fillers and the microstructure of the sample were evaluated by FESEM micrograph

    AGB and SAGB stars: modelling dust production at solar metallicity

    Get PDF
    We present dust yields for asymptotic giant branch (AGB) and super--asymptotic giant branch (SAGB) stars of solar metallicity. Stars with initial mass 1.5 M⊙≤Mini≤3 M⊙1.5~M_{\odot} \leq M_{\rm ini} \leq 3~M_{\odot} reach the carbon star stage during the AGB phase and produce mainly solid carbon and SiC. The size and the amount of the carbon particles formed follows a positive trend with themass of the star; the carbon grains with the largest size (aC∼0.2μa_{\rm C} \sim 0.2\mum) are produced by AGB stars with Mini=2.5−3 M⊙M_{\rm ini} = 2.5-3~M_{\odot}, as these stars are those achieving the largest enrichment of carbon in the surface regions. The size of SiC grains, being sensitive to the surface silicon abundance, keeps around aSiC∼0.1μa_{\rm SiC} \sim 0.1\mum. The mass of carbonaceous dust formed is in the range 10−4−5×10−3 M⊙10^{-4} - 5\times 10^{-3}~M_{\odot}, whereas the amount of SiC produced is 2×10−4−10−3 M⊙2\times 10^{-4} - 10^{-3}~M_{\odot}. Massive AGB/SAGB stars with Mini>3 M⊙M_{\rm ini} > 3~M_{\odot} experience HBB, that inhibits formation of carbon stars. The most relevant dust species formed in these stars are silicates and alumina dust, with grain sizes in the range 0.1μm<aol<0.15μ0.1\mu m < a_{\rm ol} < 0.15\mum and aAl2O3∼0.07μa_{\rm Al_2O_3} \sim 0.07\mum, respectively. The mass of silicates produced spans the interval 3.4×10−3 M⊙≤Mdust≤1.1×10−2 M⊙3.4\times 10^{-3}~M_{\odot} \leq M_{\rm dust} \leq 1.1\times 10^{-2}~M_{\odot} and increases with the initial mass of the star.Comment: Accepted for publication in MNRA

    Po River Plume Influence on Marine Biochemical Properties along the Western Adriatic Coast

    Get PDF
    An international research program was devoted to understanding the dynamic properties of the mesoscale circulation in the Adriatic Sea such as fronts, eddies, coastal filaments, river inflow and study the effects of forcing by winds and river run-offs. The present work focuses specifically on the impact of the Po river outflow on the biochemical properties along the western Adriatic coast under different conditions of river discharge and wind stress in winter and spring. In the winter cruise, the satellite images show a strong front in the northern part of the Adriatic extending from the Italian coast to the Istrian Peninsula. In situ measures showed that the northern water mass was characterized by low temperature and salinity, and high nutrient and chlorophyll concentrations due to a strong Bora event which expanded the Po River plume towards the Istrian Peninsula instead of southwards in the West Adriatic Current. During the spring cruise, wind forcing was quite weak and the volume flux from the Po River was about one third of its mean discharge for this period of the year. Off the Po River, the water column was characterized by a surface layer with low salinity and high dissolved inorganic nitrogen and chlorophyll. This water mass did not extend as far eastwards as in winter because the wind forcing was not nearly as important and the alongshore plume extended southward along the Italian Coast

    Congenital metabolic bone disorders as a cause of bone fragility

    Get PDF
    Bone fragility is a pathological condition caused by altered homeostasis of the mineralized bone mass with deterioration of the microarchitecture of the bone tissue, which results in a reduction of bone strength and an increased risk of fracture, even in the absence of high-impact trauma. The most common cause of bone fragility is primary osteoporosis in the elderly. However, bone fragility can manifest at any age, within the context of a wide spectrum of congenital rare bone metabolic diseases in which the inherited genetic defect alters correct bone modeling and remodeling at different points and aspects of bone synthesis and/or bone resorption, leading to defective bone tissue highly prone to long bone bowing, stress fractures and pseudofractures, and/or fragility fractures. To date, over 100 different Mendelian-inherited metabolic bone disorders have been identified and included in the OMIM database, associated with germinal heterozygote, compound heterozygote, or homozygote mutations, affecting over 80 different genes involved in the regulation of bone and mineral metabolism. This manuscript reviews clinical bone phenotypes, and the associated bone fragility in rare congenital metabolic bone disorders, following a disease taxonomic classification based on deranged bone metabolic activity

    Parathyroid tumors: Molecular signatures

    Get PDF
    Parathyroid tumors are rare endocrine neoplasms affecting 0.1–0.3% of the general population, including benign parathyroid adenomas (PAs; about 98% of cases), intermediate atypical parathyroid adenomas (aPAs; 1.2–1.3% of cases) and malignant metastatic parathyroid carcinomas (PCs; less than 1% of cases). These tumors are characterized by a variable spectrum of clinical phenotypes and an elevated cellular, histological and molecular heterogeneity that make it difficult to pre-operatively distinguish PAs, aPAs and PCs. Thorough knowledge of genetic, epigenetic, and molecular signatures, which characterize different parathyroid tumor subtypes and drive different tumorigeneses, is a key step to identify potential diagnostic biomarkers able to distinguish among different parathyroid neoplastic types, as well as provide novel therapeutic targets and strategies for these rare neoplasms, which are still a clinical and therapeutic challenge. Here, we review the current knowledge on gene mutations and epigenetic changes that have been associated with the development of different clinical types of parathyroid tumors, both in familial and sporadic forms of these endocrine neoplasms

    Interface pinning and slow ordering kinetics on infinitely ramified fractal structures

    Full text link
    We investigate the time dependent Ginzburg-Landau (TDGL) equation for a non conserved order parameter on an infinitely ramified (deterministic) fractal lattice employing two alternative methods: the auxiliary field approach and a numerical method of integration of the equations of evolution. In the first case the domain size evolves with time as L(t)∼t1/dwL(t)\sim t^{1/d_w}, where dwd_w is the anomalous random walk exponent associated with the fractal and differs from the normal value 2, which characterizes all Euclidean lattices. Such a power law growth is identical to the one observed in the study of the spherical model on the same lattice, but fails to describe the asymptotic behavior of the numerical solutions of the TDGL equation for a scalar order parameter. In fact, the simulations performed on a two dimensional Sierpinski Carpet indicate that, after an initial stage dominated by a curvature reduction mechanism \`a la Allen-Cahn, the system enters in a regime where the domain walls between competing phases are pinned by lattice defects. The lack of translational invariance determines a rough free energy landscape, the existence of many metastable minima and the suppression of the marginally stable modes, which in translationally invariant systems lead to power law growth and self similar patterns. On fractal structures as the temperature vanishes the evolution is frozen, since only thermally activated processes can sustain the growth of pinned domains.Comment: 16 pages+14 figure
    • …
    corecore