108 research outputs found

    INTERET DE LA LAPAROSCOPIE DANS LE REFLUX GASTRO-OESOPHAGIEN CHEZ L’ENFANT : A PROPOS DE 90 CAS

    Get PDF
    La pathologie de la jonction oesogastrique chez l’enfant peut revêtir des aspects variés, allant de la malposition cardio-tubérositaire mineure à la grande hernie hiatale. La gravité de l’affection réside dans le risque de reflux gastro-oesophagien par perturbation des mécanismes physiologiques de la continence oesogastrique. Le traitement chirurgical de la pathologie repose sur la mise en place d’un système anti-reflux ou la fundoplicature qui se fait de plus en plus par coelioscopie. L’objectif de notre travail est de rapporter les résultats à court et à long terme de la coelioscopie dans la cure de la hernie hiatale chez l’enfant en se basant sur une série de 90 cas colligés au service des urgences chirurgicales pédiatriques de Rabat en les comparants aux séries de la littérature, ainsi qu’une étude comparative des résultats de notre série avec ceux de 84 patients porteurs de RGO opérés par voie conventionnelle dans le même service

    Human enteroids: Preclinical models of non-inflammatory diarrhea

    Get PDF
    Researchers need an available and easy-to-use model of the human intestine to better understand human intestinal physiology and pathophysiology of diseases, and to offer an enhanced platform for developing drug therapy. Our work employs human enteroids derived from each of the major intestinal sections to advance understanding of several diarrheal diseases, including those caused by cholera, rotavirus and enterohemorrhagic Escherichia coli. An enteroid bank is being established to facilitate comparison of segmental, developmental, and regulatory differences in transport proteins that can influence therapy efficacy. Basic characterization of major ion transport protein expression, localization and function in the human enteroid model sets the stage to study the effects of enteric infection at the transport level, as well as to monitor potential responses to pharmacological intervention

    Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial.

    Get PDF
    BACKGROUND: The infection of a participant with norovirus during the adaptive study of interleukin-2 dose on regulatory T cells in type 1 diabetes (DILT1D) allowed a detailed insight into the cellular and cytokine immune responses to this prevalent gastrointestinal pathogen. METHODS: Serial blood, serum and peripheral blood mononuclear cell (PBMC) samples were collected pre-, and post-development of the infection. To differentiate between the immune response to norovirus and to control for the administration of a single dose of aldesleukin (recombinant interleukin-2, rIL-2) alone, samples from five non-infected participants administered similar doses were analysed in parallel. RESULTS: Norovirus infection was self-limited and resolved within 24 hours, with the subsequent development of anti-norovirus antibodies. Serum pro- and anti-inflammatory cytokine levels, including IL-10, peaked during the symptomatic period of infection, coincident with increased frequencies of monocytes and neutrophils. At the same time, the frequency of regulatory CD4 + T cell (Treg), effector T cell (Teff) CD4 + and CD8 + subsets were dynamically reduced, rebounding to baseline levels or above at the next sampling point 24 hours later.  NK cells and NKT cells transiently increased CD69 expression and classical monocytes expressed increased levels of CD40, HLA-DR and SIGLEC-1, biomarkers of an interferon response. We also observed activation and mobilisation of Teffs, where increased frequencies of CD69 + and Ki-67 + effector memory Teffs were followed by the emergence of memory CD8 + Teff expressing the mucosal tissue homing markers CD103 and β7 integrin. Treg responses were coincident with the innate cell, Teff and cytokine response. Key Treg molecules FOXP3, CTLA-4, and CD25 were upregulated following infection, alongside an increase in frequency of Tregs with the capacity to home to tissues. CONCLUSIONS: The results illustrate the innate, adaptive and counter-regulatory immune responses to norovirus infection. Low-dose IL-2 administration induces many of the Treg responses observed during infection

    Structure of a Murine Norovirus NS6 Protease-Product Complex Revealed by Adventitious Crystallisation

    Get PDF
    Murine noroviruses have emerged as a valuable tool for investigating the molecular basis of infection and pathogenesis of the closely related human noroviruses, which are the major cause of non-bacterial gastroenteritis. The replication of noroviruses relies on the proteolytic processing of a large polyprotein precursor into six non-structural proteins (NS1–2, NS3, NS4, NS5, NS6pro, NS7pol) by the virally-encoded NS6 protease. We report here the crystal structure of MNV NS6pro, which has been determined to a resolution of 1.6 Å. Adventitiously, the crystal contacts are mediated in part by the binding of the C-terminus of NS6pro within the peptide-binding cleft of a neighbouring molecule. This insertion occurs for both molecules in the asymmetric unit of the crystal in a manner that is consistent with physiologically-relevant binding, thereby providing two independent views of a protease-peptide complex. Since the NS6pro C-terminus is formed in vivo by NS6pro processing, these crystal contacts replicate the protease-product complex that is formed immediately following cleavage of the peptide bond at the NS6-NS7 junction. The observed mode of binding of the C-terminal product peptide yields new insights into the structural basis of NS6pro specificity

    Rotavirus NSP1 Inhibits NFκB Activation by Inducing Proteasome-Dependent Degradation of β-TrCP: A Novel Mechanism of IFN Antagonism

    Get PDF
    Mechanisms by which viruses counter innate host defense responses generally involve inhibition of one or more components of the interferon (IFN) system. Multiple steps in the induction and amplification of IFN signaling are targeted for inhibition by viral proteins, and many of the IFN antagonists have direct or indirect effects on activation of latent cytoplasmic transcription factors. Rotavirus nonstructural protein NSP1 blocks transcription of type I IFNα/β by inducing proteasome-dependent degradation of IFN-regulatory factors 3 (IRF3), IRF5, and IRF7. In this study, we show that rotavirus NSP1 also inhibits activation of NFκB and does so by a novel mechanism. Proteasome-mediated degradation of inhibitor of κB (IκBα) is required for NFκB activation. Phosphorylated IκBα is a substrate for polyubiquitination by a multisubunit E3 ubiquitin ligase complex, Skp1/Cul1/F-box, in which the F-box substrate recognition protein is β-transducin repeat containing protein (β-TrCP). The data presented show that phosphorylated IκBα is stable in rotavirus-infected cells because infection induces proteasome-dependent degradation of β-TrCP. NSP1 expressed in isolation in transiently transfected cells is sufficient to induce this effect. Targeted degradation of an F-box protein of an E3 ligase complex with a prominent role in modulation of innate immune signaling and cell proliferation pathways is a unique mechanism of IFN antagonism and defines a second strategy of immune evasion used by rotaviruses

    Inherent Structural Disorder and Dimerisation of Murine Norovirus NS1-2 Protein

    Get PDF
    Human noroviruses are highly infectious viruses that cause the majority of acute, non-bacterial epidemic gastroenteritis cases worldwide. The first open reading frame of the norovirus RNA genome encodes for a polyprotein that is cleaved by the viral protease into six non-structural proteins. The first non-structural protein, NS1-2, lacks any significant sequence similarity to other viral or cellular proteins and limited information is available about the function and biophysical characteristics of this protein. Bioinformatic analyses identified an inherently disordered region (residues 1–142) in the highly divergent N-terminal region of the norovirus NS1-2 protein. Expression and purification of the NS1-2 protein of Murine norovirus confirmed these predictions by identifying several features typical of an inherently disordered protein. These were a biased amino acid composition with enrichment in the disorder promoting residues serine and proline, a lack of predicted secondary structure, a hydrophilic nature, an aberrant electrophoretic migration, an increased Stokes radius similar to that predicted for a protein from the pre-molten globule family, a high sensitivity to thermolysin proteolysis and a circular dichroism spectrum typical of an inherently disordered protein. The purification of the NS1-2 protein also identified the presence of an NS1-2 dimer in Escherichia coli and transfected HEK293T cells. Inherent disorder provides significant advantages including structural flexibility and the ability to bind to numerous targets allowing a single protein to have multiple functions. These advantages combined with the potential functional advantages of multimerisation suggest a multi-functional role for the NS1-2 protein

    A new antiviral scaffold for human norovirus identified with computer-aided approaches on the viral polymerase

    Get PDF
    Human norovirus is the leading cause of acute gastroenteritis worldwide, affecting every year 685 million people. In about one third of cases, this virus affects children under five years of age, causing each year up to 200,000 child deaths, mainly in the developing countries. Norovirus outbreaks are associated with very significant economic losses, with an estimated societal cost of 60 billion dollars per year. Despite the marked socio-economic consequences associated, no therapeutic options or vaccines are currently available to treat or prevent this infection. One promising target to identify new antiviral agents for norovirus is the viral polymerase, which has a pivotal role for the viral replication and lacks closely homologous structures in the host. Starting from the scaffold of a novel class of norovirus polymerase inhibitors recently discovered in our research group with a computer-aided method, different new chemical modifications were designed and carried out, with the aim to identify improved agents effective against norovirus replication in cell-based assays. While different new inhibitors of the viral polymerase were found, a further computer-aided ligand optimisation approach led to the identification of a new antiviral scaffold for norovirus, which inhibits human norovirus replication at low-micromolar concentrations.status: Published onlin
    • …
    corecore