2,268 research outputs found

    Improved Dynamic Predictions from Joint Models of Longitudinal and Survival Data with Time-Varying Effects using P-splines

    Get PDF
    In the field of cardio-thoracic surgery, valve function is monitored over time after surgery. The motivation for our research comes from a study which includes patients who received a human tissue valve in the aortic position. These patients are followed prospectively over time by standardized echocardiographic assessment of valve function. Loss of follow-up could be caused by valve intervention or the death of the patient. One of the main characteristics of the human valve is that its durability is limited. Therefore, it is of interest to obtain a prognostic model in order for the physicians to scan trends in valve function over time and plan their next intervention, accounting for the characteristics of the data. Several authors have focused on deriving predictions under the standard joint modeling of longitudinal and survival data framework that assumes a constant effect for the coefficient that links the longitudinal and survival outcomes. However, in our case this may be a restrictive assumption. Since the valve degenerates, the association between the biomarker with survival may change over time. To improve dynamic predictions we propose a Bayesian joint model that allows a time-varying coefficient to link the longitudinal and the survival processes, using P-splines. We evaluate the performance of the model in terms of discrimination and calibration, while accounting for censoring

    On a counterexample to a conjecture by Blackadar

    Get PDF
    Blackadar conjectured that if we have a split short-exact sequence 0 -> I -> A -> A/I -> 0 where I is semiprojective and A/I is isomorphic to the complex numbers, then A must be semiprojective. Eilers and Katsura have found a counterexample to this conjecture. Presumably Blackadar asked that the extension be split to make it more likely that semiprojectivity of I would imply semiprojectivity of A. But oddly enough, in all the counterexamples of Eilers and Katsura the quotient map from A to A/I is split. We will show how to modify their examples to find a non-semiprojective C*-algebra B with a semiprojective ideal J such that B/J is the complex numbers and the quotient map does not split.Comment: 6 page

    Disordered Topological Insulators via CC^*-Algebras

    Full text link
    The theory of almost commuting matrices can be used to quantify topological obstructions to the existence of localized Wannier functions with time-reversal symmetry in systems with time-reversal symmetry and strong spin-orbit coupling. We present a numerical procedure that calculates a Z_2 invariant using these techniques, and apply it to a model of HgTe. This numerical procedure allows us to access sizes significantly larger than procedures based on studying twisted boundary conditions. Our numerical results indicate the existence of a metallic phase in the presence of scattering between up and down spin components, while there is a sharp transition when the system decouples into two copies of the quantum Hall effect. In addition to the Z_2 invariant calculation in the case when up and down components are coupled, we also present a simple method of evaluating the integer invariant in the quantum Hall case where they are decoupled.Comment: Added detail regarding the mapping of almost commuting unitary matrices to almost commuting Hermitian matrices that form an approximate representation of the sphere. 6 pages, 6 figure

    Penalized composite link models for aggregated spatial count data: a mixed model approach

    Get PDF
    Mortality data provide valuable information for the study of the spatial distri- bution of mortality risk, in disciplines such as spatial epidemiology and public health. However, they are frequently available in an aggregated form over irreg- ular geographical units, hindering the visualization of the underlying mortality risk. Also, it can be of interest to obtain mortality risk estimates on a finer spatial resolution, such that they can be linked to potential risk factors that are usually measured in a different spatial resolution. In this paper, we propose the use of the penalized composite link model and its mixed model representation. This model considers the nature of mortality rates by incorporating the population size at the finest resolution, and allows the creation of mortality maps at a finer scale, thus reducing the visual bias resulting from the spatial aggrega- tion within original units. We also extend the model by considering individual random effects at the aggregated scale, in order to take into account the overdis- persion. We illustrate our novel proposal using two datasets: female deaths by lung cancer in Indiana, USA, and male lip cancer incidence in Scotland counties. We also compare the performance of our proposal with the area-to-point Poisson kriging approach

    The ordered K-theory of a full extension

    Get PDF
    Let A be a C*-algebra with real rank zero which has the stable weak cancellation property. Let I be an ideal of A such that I is stable and satisfies the corona factorization property. We prove that 0->I->A->A/I->0 is a full extension if and only if the extension is stenotic and K-lexicographic. As an immediate application, we extend the classification result for graph C*-algebras obtained by Tomforde and the first named author to the general non-unital case. In combination with recent results by Katsura, Tomforde, West and the first author, our result may also be used to give a purely K-theoretical description of when an essential extension of two simple and stable graph C*-algebras is again a graph C*-algebra.Comment: Version IV: No changes to the text. We only report that Theorem 4.9 is not correct as stated. See arXiv:1505.05951 for more details. Since Theorem 4.9 is an application to the main results of the paper, the main results of this paper are not affected by the error. Version III comments: Some typos and errors corrected. Some references adde

    Personen, die nicht am Erwerbsleben teilnehmen - Analyse sozioökonomischer Merkmale unter besonderer Berücksichtigung des Haushaltskontextes und Bestimmung des Arbeitskräftepotenzials : Endbericht

    Full text link
    Für die Fachkräftesicherung stellen bisher nicht am Arbeitsmarkt aktive Personen (sog. Nichterwerbspersonen) ein wichtiges Potenzial dar. Die vorliegende Studie untersucht die Eigenschaften dieser Personengruppe und schätzt auf dieser Grundlage ihr Aktivierungspotenzial ein. Betrachtet werden Aspekte wie sozio-demographische Merkmale von Nichterwerbspersonen, Übergänge in und aus Nichterwerbstätigkeit, Faktoren, die einen Austritt aus Nichterwerbstätigkeit fördern oder hemmen sowie Erwerbspläne von Nichterwerbspersonen. Mit Hilfe von Clusteranalysen werden Typen von Nichterwerbstätigen identifiziert, die die Grundlage für die Abschätzung von Wahrscheinlichkeiten zur Aktivierung bilden. Abschließend werden Aktivierungsmaßnahmen diskutiert
    corecore