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Summary. In the field of cardio-thoracic surgery, valve function is monitored over time after surgery. The motivation for our
research comes from a study which includes patients who received a human tissue valve in the aortic position. These patients
are followed prospectively over time by standardized echocardiographic assessment of valve function. Loss of follow-up could
be caused by valve intervention or the death of the patient. One of the main characteristics of the human valve is that its
durability is limited. Therefore, it is of interest to obtain a prognostic model in order for the physicians to scan trends in
valve function over time and plan their next intervention, accounting for the characteristics of the data. Several authors have
focused on deriving predictions under the standard joint modeling of longitudinal and survival data framework that assumes
a constant effect for the coefficient that links the longitudinal and survival outcomes. However, in our case, this may be a
restrictive assumption. Since the valve degenerates, the association between the biomarker with survival may change over
time. To improve dynamic predictions, we propose a Bayesian joint model that allows a time-varying coefficient to link the
longitudinal and the survival processes, using P-splines. We evaluate the performance of the model in terms of discrimination
and calibration, while accounting for censoring.
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1. Introduction
In the field of cardio-thoracic surgery, valve function is mon-
itored periodically over time after heart valve surgery. Aortic
gradient (AG) (mmHg) is one of the continuous echocardio-
graphic markers that measures valve (dys)function, where
high values indicate a worsening of the patient’s condition.
Specifically, it measures aortic stenosis which occurs when the
opening of the aortic valve located between the left ventricle
of the heart and the aorta is narrowed. During the follow-
up period after surgery, patients may require an intervention
or may die. The motivation of this research comes from a
study, conducted in the Erasmus University Medical Cen-
ter, which includes all patients who received a human tissue
valve allograft in the aortic position in the Department of
Cardio-Thoracic Surgery (Bekkers et al., 2011). In total 296
patients who survived aortic valve or root replacement with an
allograft valve were followed over time. Specifically, echocar-
diographic examinations were scheduled at six months, one
year postoperatively and biennially thereafter. During follow-
up, 161 (54%) patients either died or required a reoperation
on the same valve. A total of 1669 echocardiographic measure-
ments of AG were performed. The median number of visits is
six and the median years of follow up is 9.3. One of the char-
acteristics of human valves is that their durability is limited.

Hence, it is important for the physicians to have a prognostic
tool in order to carefully monitor trends in valve function over
time and plan a future re-intervention.

Joint modeling of longitudinal and survival data is a
popular framework to analyze data including repeated mea-
surements and time-to-event outcomes appropriately (Tsiatis
and Davidian, 2004; Andrinopoulou et al., 2012; Rizopoulos,
2012; Rizopoulos et al., 2015). The idea behind these mod-
els is that the longitudinal and the survival processes share
common random effects, inducing correlation between the two
processes. Specifically, we construct a mixed-effects model
to describe the evolution over time for the longitudinal
outcome, and use these estimated evolutions as a time-
dependent covariate in a survival model. Several authors
have focused on deriving predictions under joint modeling
of longitudinal and survival data framework (Taylor, Yu,
and Sandler, 2005; Garre et al., 2008; Yu, Taylor, and San-
dler, 2008; Proust-Lima and Taylor, 2009; Rizopoulos, 2011;
Andrinopoulou et al., 2015). To improve the fit and the pre-
dictive accuracy of joint models, previous work allowed the
inclusion of multiple longitudinal outcomes and investigated
the selection of the optional functional form (Rizopoulos,
2011; Rizopoulos et al., 2014; Andrinopoulou and Rizopou-
los, 2016; Andrinopoulou et al., 2017). A common feature

© 2017, The Authors. Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/154418927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-5372-4163
http://creativecommons.org/licenses/by/4.0/


2 Biometrics

of all aforementioned models and previous work published
on the motivating data is that the parameters that measure
the strength of the association between the longitudinal and
survival outcome were assumed to be constant in time. How-
ever, the heart valve degenerates, therefore it is natural and
biologically more desirable to assume that the effect of AG
is changing over time. To investigate that, we performed a
preliminary analysis assuming a time-dependent Cox model
for the composite event death/reoperation including as pre-
dictors the square root of AG (SAG), a transformation that
was explored in previous work (Andrinopoulou et al., 2014),
and gender. Figure 1 shows the smoothed scatter plot of
the Schoenfeld residuals from this Cox model versus time.
These residuals are typically used to investigate the pro-
portional hazards assumption, and for the SAG they show
an increasing trend indicating violation of a constant-effect
assumption.

Even though, the consideration of time-varying coefficients
has been extensively studied in the general context of survival
analysis using polynomials and B-splines (Nan et al., 2005;
Perperoglou, 2014), relatively little work has been done on
joint models with time-varying coefficients (Song and Wang,
2008). To our knowledge, no work has been done to evalu-
ate whether such time-varying coefficients may improve the
accuracy of individualized predictions within the framework
of joint models. The idea behind the time-varying coefficient
models is to include interactions of the covariates with an
appropriate pre-defined time function. To enhance the predic-
tive performance of the joint model, we assume a time-varying
effect of SAG using P-splines. Specifically, it is approximated
by a polynomial spline written in terms of a linear combi-
nation of B-spline basis functions (Eliers and Marx, 1996;
Lang and Brezger, 2004; Eliers, Marx, and Durbán, 2015).
To overcome the problem of the large number of parame-
ters and to stabilize the predictions, a penalty is applied to
the coefficients. To facilitate flexible modeling of the survival
outcome, we use P-splines also for the logarithm of the base-
line hazard. To evaluate the derived predictions, we present
extensions of classic measures of predictive ability, such as
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Figure 1. Time-varying coefficient of the SAG, using
Schoenfeld residuals. The solid line represents the mean esti-
mate while the dotted lines the corresponding confidence
interval. The dashed gray line represents the coefficient
of SAG.

discrimination and calibration, in the time-dependent setting
while accounting for censoring.

The rest of the article is organized as follows: Section 2
describes the formulation of the joint model. Section 3
presents the Bayesian estimation. Section 4 presents measures
to assess the predictive performance of the model. Section 5
shows the results for the cardio data analysis, while, Section
6 contains simulation studies. Finally, in Section 7, we close
with a discussion.

2. Joint Model Definition

We let T∗
i denote the true failure time for the i-th individ-

ual (i = 1, . . . , n), and Ci the censoring time. Moreover, Ti =
min(T∗

i , Ci) denotes the observed failure time and δi = {0, 1}
is the event indicator where zero indicates censoring. We let
yi denote the longitudinal response obtained at different time
points tij > 0, (j = 1, . . . , ni). To describe the subject-specific
evolution over time of the continuous longitudinal outcome
SAG, we use a mixed-effects model. In particular, we postu-
late

yi(t) = ηi(t) + εi(t) = x�
i (t)β + z�

i (t)bi + εi(t),

where x�
i (t) denotes the design vector for the fixed effects

regression coefficients β and z�
i (t) the design vector for the

random effects bi. Moreover, εi(t) ∼ N(0, σ). For the corre-
sponding random effects, we assume a multivariate normal
distribution, namely

bi ∼ Nb(0, �2
b ).

We postulate a varying-coefficient joint model (VCJM) for
the relationship between the survival and the longitudinal
outcome. Specifically, we have

hi(t, θs) = h0(t) exp[γ�wi + f {λ(t),Hi(t)}],
where θ�

s is the parameter vector for the survival outcomes,
wi is a vector of baseline covariates with a corresponding
vector of regression coefficients γ, and Hi(t) = {ηi(ζ), 0 ≤
ζ < t} denotes the history of the true unobserved longitudi-
nal process up to time point t. The function f {λ(t),Hi(t)}
specifies which features of the longitudinal submodel are
included in the relative risk model (Rizopoulos and Ghosh,
2011; Rizopoulos, 2012). Previous work suggested that
not only the value of SAG but also other characteris-
tics of the biomarker may have an influence on the event
of interest (Andrinopoulou et al., 2017). Several speci-
fications of f (.) have been proposed in the literature
(Rizopoulos and Ghosh, 2011). Some examples are the
following:

f {λ(t),Hi(t)} = λ(t)ηi(t),

f {λ(t),Hi(t)} = λ1(t)ηi(t) + λ2(t)
dηi(t)

dt
,

f {λ(t),Hi(t)} = λ(t)
∫ t

0
ηi(s)ds.

Specifically, f (.) postulates that the hazard of the event is
associated with the underlying value of the longitudinal out-
come at a specific time point t, the value and the slope of the
longitudinal outcome at t, or the accumulated longitudinal
process up to time t.

In the standard constant-coefficient joint model (CCJM),
λ(t) is assumed to be constant over time. For the VCJM,
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we model λ(t) flexibly assuming a smooth function. Several
approaches have been proposed for modeling and estimating
smooth functions such as B-splines. A problem that arises in
such methods is the selection of the number and position of
the knots which has been a subject of much research. In this
manuscript, we adopt the P-splines approach for λ(t). The
basic idea of P-splines is to use a (relatively) high number
of equally spaced knots. To obtain sufficient smoothness of
the fitted curves and to avoid overfitting, a roughness penalty
based on differences of adjacent B-spline coefficients is applied
(Eliers and Marx, 1996). In particular, we take

λ(t) =
L∑

�=1

α�B�(t),

where α� is a set of parameters that capture the strength of
association between the longitudinal and survival outcomes
and B�(t) denotes the �-th basis function of a B-spline. To
further facilitate improving the derived predictions from the
joint model, we model the baseline hazard with the same P-
splines approach. Specifically,

log{h0(t)} =
U∑

u=1

γh0,uBu(t),

where γh0,u are the coefficients of the baseline hazard and Bu(t)
denotes the u-th basis function of a B-spline.

3. Bayesian Estimation

We employ a Bayesian approach where inference is based
on the posterior of the model. In particular, we use Markov
chain Monte Carlo (MCMC) methods to estimate the param-
eters of the VCJM. The likelihood of the model is derived
under the assumption that the longitudinal and survival pro-
cesses are independent given the random effects (Rizopoulos,
2012). Moreover, the longitudinal responses of each subject
are assumed independent given the random effects. The pos-
terior distribution is written as

p(θ, bi |yi, Ti, δi)∝
ni∏

j=1

p(yij |bi, θy)p{Ti, δi |ηi(Ti), θs}p(bi |θy)p(θ),

where θ = (θ�
y , θ�

s )� is the parameter vector for the survival
and the longitudinal outcomes, respectively. The likelihood
contribution of the longitudinal and survival model together
with the formulation of the deviance information criterion
(DIC) are given in Web Appendix C.

3.1. Bayesian P-Splines

The Bayesian P-splines approach was first introduced by Lang
and Brezger (2004). In our case, the smoothness of functions
λ(t) and h0(t) is controlled by the following priors for the coef-
ficient that links the longitudinal and the survival outcomes
α and the coefficient of the baseline hazard γh0

:

α | τα ∼ NL(0, ταMα) and τα ∼ Gamma(c1, c2),

γh0
| τγh0

∼ NU(0, τγh0
Mγh0

) and τγh0
∼ Gamma(f1, f2),

where Mα, Mγh0
are the penalty matrices. In particular,

Mα = Mγh0
= D�

r Dr + 10−6I, where Dr is a r-th order differ-
ence matrix. The scaled identity matrix I ensures a positive
define variance–covariance matrix. As described in the lit-
erature (Reinsch, 1967; Eliers and Marx, 1996), a common
choice for the penalty matrices is to assume a second order
penalty. The amount of smoothness is controlled by the vari-
ance parameters τγh0

and τα, where hyperpriors are assigned.
A usual recommendation is to set c1 and f1 equal to 1 and c2

and f2 equal to a small number. Alternative specifications of
these hyperpriors can be found in Jullion and Lambert (2007).

4. Measuring Predictive Performance

As motivated in Section 1, it is important for physicians
to have a prognostic tool for planning next interventions.
To assess the predictive performance of the VCJM and to
compare it to the CCJM, we focus on discrimination and cal-
ibration. Specifically, discrimination is how well can the model
discriminate between patients who will experience the event
from patients who will not (Pencina et al., 2008), whereas
calibration is how well the model predicts the observed event
rates (Schemper and Henderson, 2000).

4.1. Discrimination

A key feature of our model is to distinguish between patients
who are going to die or require a reoperation within a spe-
cific time frame from patients who will not. In particular, for a
future patient l with SAG measurements ỹl up to time point t,
we are interested in investigating whether he will die or require
a reoperation in the medically-relevant time frame (t, t + �t]
within which the physician could intervene to improve sur-
vival. The survival/intervention-free probability of patient l

within this interval is,

πl(t, �t) = Pr(T ∗
l ≥ t + �t | T ∗

l > t, ỹl(t), Dn),

where Dn = {Ti, δi, yi, i = 1, . . . , n} denotes the sample on
which the joint model was fitted. For the calculation of sensi-
tivity and specificity, we have πl(t, �t) ≤ c if subject l died or
required a reoperation and πl(t, �t) > c if he did not experi-
ence death/reoperation, for a specific c ∈ [0, 1]. In particular,
we can define sensitivity and specificity as

Pr {πl(t, �t) ≤ c | T ∗
l ∈ (t, t + �t]} and

Pr {πl(t, �t) > c | T ∗
l > t + �t},

respectively. Using the area under the receiver operating
characteristic curve (AUC) we can assess the discriminative
capability of the model. In particular, given a randomly cho-
sen pair of patients (l1, l2), we have

AUC(t, �t) = Pr[πl1(t, �t) < πl2(t, �t) | {T ∗
l1

∈ (t, t + �t]}
∩{T ∗

l2
> t + �t}].

If patient l1 experiences death/reoperation within the relevant
time frame whereas patient l2 does not, then we would expect
the VCJM to assign higher survival/intervention-free proba-
bility during the period (t, t + �t] for the patient that did not
experience death/reoperation. In the cardio data set, the val-
ues of time-to-death/reoperation are not fully observed for all
patients. To account for this, the estimation of AUC(t, �t) is
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based on the following decomposition

̂AUC(t, �t) =
4∑

w=1

̂AUCw(t, �t),

which include the following pairs of patients

�
(1)
l1l2

(t) = [{Tl1 ∈ (t, t + �t]} ∩ {δl1 = 1}] ∩ {Tl2 > t + �t},
�

(2)
l1l2

(t) = [{Tl1 ∈ (t, t + �t]} ∩ {δl1 = 0}] ∩ {Tl2 > t + �t},
�

(3)
l1l2

(t) = [{Tl1 ∈ (t, t + �t]} ∩ {δl1 = 1}] ∩ [{Tl1 < Tl2 ≤ t + �t}
∩{δl2 = 0}],

�
(4)
l1l2

(t) = [{Tl1 ∈ (t, t + �t]} ∩ {δl1 = 0}] ∩ [{Tl1 < Tl2 ≤ t + �t}
∩{δl2 = 0}].

̂AUC1(t, �t) includes the pairs of patients who are comparable

�
(1)
l1l2

(t) and
∑4

w=2
̂AUCw(t, �t) the pairs of patients who due

to censoring cannot be compared {�(w)
l1l2

(t), w = 2, 3, 4}. Then,
with I(.) the indicator function

̂AUCw(t, �t) =
∑n

l1=1

∑n

l2=1;l2 
=l1
I{π̂l1(t, �t) < π̂l2(t, �t)} × I{�(w)

l1l2
(t)} × K̂w∑n

l1=1

∑n

l2=1;l2 
=l1
I{�(w)

l1l2
(t)} × K̂w

,

which is the proportion of concordant subjects out of the
set of comparable subjects at time t. Specifically, if in a
randomly selected pair of patients, the one with the higher
event probability experiences the event and the one with
the lower probability does not experience the event, then
this pair is said to be a concordant pair. For w = 1, we
have K̂2 = 1 because the pairs of patients are comparable.

For w = 2, 3, 4, the ̂AUCw(t, �t) are weighted with the
probability that the concordant subjects are comparable.
In particular, K̂2 = 1 − π̂l1(t, �t), K̂3 = π̂l2(t, �t) and K̂4 =
{1 − π̂l1(t, �t)} × π̂l2(t, �t).

4.2. Calibration

To assess the accuracy of the model, we use the prediction
error (PE). Using all available information for a particu-
lar patient l, we are interested in comparing the predicted
probability of survival/intervention-free of this patient to the
observed truth:

PE(t, �t) = E[{Nl(t + �t) − πl(t, �t)}2]
where Nl(t) = I(T ∗

l > t) is the event status at time t. To
account for censoring, the following estimate has been pro-
posed by Henderson et al. (2002):

P̂E(t, �t) ={R(t)}−1
∑

l:Tl≥t

{
I(Tl >t+�t){1−π̂l(t, �t)}2

+ δlI(Tl <t + �t){0 − π̂l(t, �t)}2+ (1−δl)I(Tl <t+�t)

×
[
π̂l(Tl, �t){1 − π̂l(t, �t)}2 + {1 − π̂l(Tl, �t)}{0 − π̂l

×(t, �t)}2
]}

where R(t) denotes the number of subjects at risk at t.
The term I(Tl > t + �t){1 − π̂l(t, �t)}2 refers to patients who

were alive after t + �t and δlI(Tl < t + �t){0 − π̂l(t, �t)}2 to
patients who died before t + �t. The remaining term refers to
patients who were censored in the interval [t, t + �t].

5. Analysis of the Cardio Data Set

In this section, we present the analysis of the cardio data
introduced in Section 1. Our primary focus is to investigate
the association between SAG with time-to-death/reoperation.
In Web Figure S1, the evolution of the SAG for 12 ran-
domly selected patients is presented, where it is shown that
most of these patients have non-linear profiles. Therefore, we
assumed a linear mixed-effects submodel including natural
cubic splines for time. The DIC criterion indicated that the
model assuming one internal knot at 5.02 years (correspond-
ing to 50% of the observed follow-up times) in both the fixed-
and random-effects parts had a better fit. Furthermore, we
corrected for gender. The mixed-effects submodel for the SAG
is

yi(t) = ηi(t) + εi(t) = β0 + β1gi +
2∑

v=1

βv+1ns(t; v) + b0i

+
2∑

v=1

bvins(t; v) + εi(t),

where yi(t) are the measurements of SAG, ns(.) denotes the
natural cubic splines, εi(t) ∼ N(0, σ) and bi ∼ Nb(0, �2

b ).
To investigate the association between SAG and sur-

vival, we postulated the VCJM. Motivated by previous work
(Andrinopoulou et al., 2017), where different features of the
SAG were found to have an influence on survival, we assumed
the value and the slope of the longitudinal outcome to be asso-
ciated with death/reoperation. Furthermore, we corrected for
gender. Specifically, the survival submodel takes the form

hi(t, θs)=exp

{∑U

u=1
γh0,uBu(t)

}
exp

{
γgi+λ1(t)ηi(t)+λ2(t)

dηi(t)

dt

}

=exp

{∑U

u=1
γh0,uBu(t)

}
exp

{
γgi + ∑L

�=1
α1�B�(t)ηi(t)

+∑L

�=1
α2�B�(t)

dηi(t)

dt

}
,

where α1� and α2� are the coefficients that link the longitudinal
and survival processes, γ is the coefficient for gender and γh0,�

are the baseline hazard coefficients. We assumed in both cases
quadratic B-splines basis B�(t) = Bu(t) with 8 equally distance
internal knots ranging from zero until 20.1 years.

As described in Section 3, for the P-splines approach, we
assumed normal priors for the time-varying coefficients α =
{α1, α2} and the baseline hazard coefficients γh0

and gamma
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hyperpriors for τα and τγh0
where we took c1 = f1 = 1 and

c2 = f2 = 0.005. For the rest of the parameters, standard
noninformative priors were used. For the coefficients of the
longitudinal outcome β and the survival coefficient γ, nor-
mal priors were taken with mean zero and large variance. For
the variance–covariance matrix of the random effects �b, we
assumed inverse Wishart prior with an identity scale matrix
and degrees of freedom equal to the total number of the ran-
dom effects. For the precision parameter of the longitudinal
outcome, a gamma prior was taken with parameters that were
based on the separate analysis of the outcome. We ran the
MCMC using three chains with 150,000 iterations, 50,000
burn-in and 2 thinning.

In Figure 2, we present the mean estimates and the credi-
ble intervals of the estimated λ(t) for the value and the slope
association parameters, respectively. The gray solid lines rep-
resent the coefficient when CCJM was assumed. The CCJM
takes the form,

hi(t, θs) = exp

{
U∑

u=1

γh0,uBu(t)

}
exp

{
γgi + α1ηi(t) + α2

dηi(t)

dt

}
,

where, we use P-splines for the baseline hazard for a fair com-
parison. We observe that the effect of the SAG on survival
seems to slightly increase over time, however this effect is not
strong. The effect of the slope of SAG on survival appears to
increase linearly with time. Specifically, at the beginning of
the study (t = 5), for patients having the same gender and
level of SAG, the log hazard ratio for 1 mmHg increase in
the current slope of the SAG is 3.4. However, at the end of
the study (t = 15) this effect increases to 7.4. Further, results
of the models including the posterior estimates, DIC, trace
plots and Gelman–Rubin’s diagnostic are presented in Web

Tables S1 and S2 and Web Figures S2–S4 followed by a dis-
cussion (Web Appendix B). In Web Figure S5, we present
prediction plots for a 46 years old male. Every time the
patient visits the hospital his survival/intervention-free prob-
abilities are updated. Specifically, five years after his first
visit his survival/intervention-free probability is 0.7, while five
years after his last visit this probability is 0.3. The evolu-
tion of the SAG for the specific patient is presented in Web
Figure S6.

To investigate whether the proposed VCJM improves
dynamic predictions, we compared the VCJM with the CCJM
based on the AUC(t, �t) and PE(t, �t) measures introduced
in Section 4. Corrected estimates of these measures were
obtained using an internal validation procedure. We per-
formed a 5-fold cross-validation by splitting our data set in
five subsets, fitting each time the model in four of the sub-
sets and calculating the accuracy measures in the subset that
was excluded. This cross-validation procedure was replicated
100 times. The calculation of AUC(t, �t) and PE(t, �t) was
performed for the follow-up times {t = 5.5, 7.5, 9.5} whereas
�t = 2. The results are presented in Figure 3 where boxplots
of 100 cross validations are shown. We obtained better dis-
criminative capability (AUC) and predictive accuracy (PE)
from the VCJM model compared to the CCJM in all cases.
Specifically, we observe most of the time higher AUC values
and lower PE values for the VCJM. These differences seem to
be more profound for later follow-up times.

6. Simulation Study

6.1. Design

We performed a series of simulations to evaluate the per-
formance of the VCJM. We simulated 400 patients with
maximum number of repeated measurements equal to 10. We
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functions corresponding to the value and slope association parameters are presented. The horizonal gray solid lines represent
the mean estimates of the CCJM.
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Figure 3. Boxplots of AUC and PE when assuming the VCJM and CCJM at different time points with �t = 2. Internal
validation.

assumed one longitudinal and one survival outcome as in the
analysis of the cardio data set. For the continuous longitudi-
nal outcome, we investigated the following linear mixed-effects
model

yi(t) = ηi(t) + εi(t) = β0 + β1gi + β2t + b0i + b1it + εi(t),

where εi(t) ∼ N(0, σ2
y ) and b = (b0i, b1i) ∼ N2(0, �2

b ). For sim-
plicity, we adopted a linear effect of time for both the fixed
and the random part, and corrected for gender. Time t was
simulated from a uniform distribution between zero and 19.5.
For the survival part, we investigated the following scenarios.

For Scenario I, we postulated the following model:

hi(t) = h0(t) exp

{
γgi + λ(t)ηi(t)

}

= h0(t) exp

{
γgi + ∑L

�=1
α�B�(t)ηi(t)

}
,

where B�(t) denotes the �-th basis function of a B-spline
where the knots were placed at fixed time points. We assumed
time-varying effect of the underlying value for the association
parameter and corrected for gender. The baseline risk was
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Figure 4. Boxplots of AUC and PE when assuming the VCJM and the CCJM at different time points with �t = 2. For the
simulation of the data Scenario Ia was used. External validation.



Improved Dynamic Predictions from Joint Models 7

simulated from a Weibull distribution h0(t) = ξtξ−1. For the
simulation of the censoring times, an exponential censoring
distribution was chosen with mean μc, so that the censoring
rate was between 40% and 60%. Scenario Ia assumed a linear
evolution for λ(t), while Scenario Ib a non-linear evolution.

For Scenario II, the survival submodel takes the form,

hi(t) = h0(t) exp

{
γgi + αηi(t)

}
,

where a constant effect for the α coefficient was assumed.
Finally, for Scenario IIIa and Scenario IIIb, the survival

submodel takes the form,

hi(t) = h0(t) exp

{
γgi + α1 + α2ηi(t) + α3η

2
i (t)

}
,

and hi(t) = h0(t) exp

{
γgi + α1 + α2ηi(t) + α3η

2
i (t)

+α4η
3
i (t) + α5η

4
i (t)

}
,

respectively. In this case, we assumed polynomial effects for
the association parameters.

We simulated 200 data sets per scenario. More details are
presented in Web Table S3.

6.2. Analysis and Results

To evaluate the performance of the proposed model, we fit
the VCJM and the CCJM with the same specification as the
one presented in Section 6.1. To mimic the analysis of the
cardio data set, the joint models were fitted using P-splines
for the baseline hazard, rather than the Weibull one. Web

Figures S7 and S8, illustrate the true and estimated λ(t) func-
tion when simulating from the linear Scenario Ia (left panel)
and the non-linear Scenario Ib (right panel) and when fit-
ting the VCJM. In particular, in Web Figure S7, we assumed
eight internal knots for the simulation and the fitting part
while in Web Figure S8, we assumed 20. Web Figure S9 illus-
trates the true and estimated λ(t) function for Scenario II
when fitting the VCJM assuming eight internal knots. Web
Figures S10 and S11 present the results when simulating for
Scenario IIIa and Scenario IIIb, respectively, and when fit-
ting the VCJM with eight internal knots. Overall our model
successfully recovers the true λ(t). The reason for observing
greater variability at t < 5 and t > 15 is that relatively few
events are observed in these regions.

To further evaluate whether the VCJM produces predic-
tions of better quality than the CCJM, we performed an
external validation procedure. For each simulated data set
from scenarios Ia, Ib, and II, we randomly excluded 200
patients. Using the remaining patients, we fitted the VCJM
and the CCJM and computed the AUC(t, �t) and PE(t, �t)
for the 200 patients that were initially excluded. These mea-
sures were calculated at follow-up times {t = 5.5, 7.5, 9.5}
using �t = 2. Figures 4 and 5 present boxplots with the results
under Scenarios Ia and Ib, respectively. It can be seen that,
overall, the VCJM performs better than the CCJM. Most
of the time we observe a higher AUC value and a lower
PE value for the VCJM. Smaller differences are obtained for
Scenario Ib for the AUC at t = 5.5 and the PE at t = 9.5.
This is explained by the fact that not enough events were
observed at the specific time periods. Figure 6, which presents
boxplots for Scenario II, suggests that the VCJM provides
accurate predictions even if the data is generated with a
constant effect for the coefficient that links the longitudi-
nal and survival outcomes. In all cases, we obtain AUC
and PE values that are similar in both the VCJM and
the CCJM.
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Figure 5. Boxplots of AUC and PE when assuming the VCJM and the CCJM at different time points with �t = 2. For the
simulation of the data Scenario Ib was used. External validation.
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Figure 6. Boxplots of AUC and PE when assuming the VCJM and the CCJM at different time points with �t = 2. For the
simulation of the data scenario II was used. External validation.

7. Discussion

Motivated by the fact that the human tissue valves degen-
erate and hence the effect of SAG on survival could change
over time, we developed a VCJM using P-splines. We used P-
splines for the logarithm of the baseline hazard. We showed
that even when the data is generated with a constant effect
for the coefficient that links the longitudinal and survival out-
come, the VCJM performs equal or better than the CCJM.
In this article, we followed the Bayesian framework and there-
fore, extensions to more complex situations are comparably
easy. A further advantage of the Bayesian approach, is that it
allows us to automatically estimate the smoothing parameter
in the P-splines approach by assigning a prior to it.

Further extensions to improve the VCJM can be considered
for future work. In this article, we used only one longitudinal
and one survival outcome. Extension to multiple longitudinal
outcomes might be useful since other longitudinal outcomes
that are related to the heart value may have an influence on
survival. Finally, death and reoperation are competing risks
and therefore a competing risk survival submodel would be
more appropriate.

8. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections 3,
5, and 6 and the code to run the VCJM, are available with this
article at the Biometrics website on Wiley Online Library.
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