62,134 research outputs found

    Stellar Forensics II: Millisecond Pulsar Binaries

    Get PDF
    We use the grid of models described in paper~I to analyse those millisecond pulsar binaries whose secondaries have been studied optically. In particular, we find cooling ages for these binary systems that range from <1Gyr< 1 \rm Gyr to 15Gyr\sim \rm 15 Gyr. Comparison of cooling ages and characteristic spin down ages allows us to constrain the initial spin periods and spin-up histories for individual systems, showing that at least some millisecond pulsars had sub-Eddington accretion rates and long magnetic field decay times.Comment: Latex, 14 pages, and 15 postscript figures. Accepted by Monthly Notice

    The Pulsar Kick Velocity Distribution

    Get PDF
    We analyse the sample of pulsar proper motions, taking detailed account of the selection effects of the original surveys. We treat censored data using survival statistics. From a comparison of our results with Monte Carlo simulations, we find that the mean birth speed of a pulsar is 250-300 km/s, rather than the 450 km/s foundby Lyne & Lorimer (1994). The resultant distribution is consistent with a maxwellian with dispersion σv=190km/s \sigma_v = 190 km/s. Despite the large birth velocities, we find that the pulsars with long characteristic ages show the asymmetric drift, indicating that they are dynamically old. These pulsars may result from the low velocity tail of the younger population, although modified by their origin in binaries and by evolution in the galactic potential.Comment: Latex, 10 pages, and 11 postscript figures. Accepted by Monthly Notice

    Breakdown of Kinetic Compensation Effect in Physical Desorption

    Full text link
    The kinetic compensation effect (KCE), observed in many fields of science, is the systematic variation in the apparent magnitudes of the Arrhenius parameters EaE_a, the energy of activation, and ν\nu, the preexponential factor, as a response to perturbations. If, in a series of closely related activated processes, these parameters exhibit a strong linear correlation, it is expected that an isokinetic relation will occur, then the rates kk become the same at a common compensation temperature TcT_c. The reality of these two phenomena continues to be debated as they have not been explicitly demonstrated and their physical origins remain poorly understood. Using kinetic Monte Carlo simulations on a model interface, we explore how site and adsorbate interactions influence the Arrhenius parameters during a typical desorption process. We find that their transient variations result in a net partial compensation, due to the variations in the prefactor not being large enough to completely offset those in EaE_a, both in plots that exhibit a high degree of linearity and in curved non-Arrhenius plots. In addition, the observed isokinetic relation arises due to a transition to a non-interacting regime, and not due to compensation between EaE_a and lnν\ln{\nu}. We expect our results to provide a deeper insight into the microscopic events that originate compensation effects and isokinetic relations in our system, and in other fields where these effects have been reported.Comment: 11 pages, 17 figures, 3 table

    The SiRi Particle-Telescope System

    Get PDF
    A silicon particle-telescope system for light-ion nuclear reactions is described. In particular, the system is designed to be optimized for level density and gamma-ray strength function measurements with the so-called Oslo method. Eight trapezoidal modules are mounted at 5 cm distance from the target, covering 8 forward angles between theta = 40 and 54 degrees. The thin front dE detectors (130 micrometer) are segmented into eight pads, determining the reaction angle for the outgoing charged ejectile. Guard rings on the thick back E detectors (1550 micrometer) guarantee low leakage current at high depletion voltage.Comment: 6 pages, 8 figure

    Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems

    Get PDF
    A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius

    Quantitative modeling of spin relaxation in quantum dots

    Full text link
    We use numerically exact diagonalization to calculate the spin-orbit and phonon-induced triplet-singlet relaxation rate in a two-electron quantum dot exposed to a tilted magnetic field. Our scheme includes a three-dimensional description of the quantum dot, the Rashba and the linear and cubic Dresselhaus spin-orbit coupling, the ellipticity of the quantum dot, and the full angular description of the magnetic field. We are able to find reasonable agreement with the experimental results of Meunier et al. [Phys. Rev. Lett. 98, 126601 (2007)] in terms of the singlet-triplet energy splitting and the spin relaxation rate, respectively. We analyze in detail the effects of the spin-orbit factors, magnetic-field angles, and the dimensionality, and discuss the origins of the remaining deviations from the experimental data

    Tunable effective g-factor in InAs nanowire quantum dots

    Full text link
    We report tunneling spectroscopy measurements of the Zeeman spin splitting in InAs few-electron quantum dots. The dots are formed between two InP barriers in InAs nanowires with a wurtzite crystal structure grown by chemical beam epitaxy. The values of the electron g-factors of the first few electrons entering the dot are found to strongly depend on dot size and range from close to the InAs bulk value in large dots |g^*|=13 down to |g^*|=2.3 for the smallest dots. These findings are discussed in view of a simple model.Comment: 4 pages, 3 figure

    An Elemental Assay of Very, Extremely, and Ultra Metal-Poor Stars

    Get PDF
    We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor (VMP; [Fe/H] < -2.0) stars, 12 of which are extremely metal-poor (EMP; [Fe/H] < -3.0), and 4 of which are ultra metal-poor (UMP; [Fe/H] < -4.0). These stars were targeted to explore differences in the abundance ratios for elements that constrain the possible astrophysical sites of element production, including Li, C, N, O, the alpha-elements, the iron-peak elements, and a number of neutron-capture elements. This sample substantially increases the number of known carbon-enhanced metal-poor (CEMP) and nitrogen-enhanced metal-poor (NEMP) stars -- our program stars include eight that are considered "normal" metal-poor stars, six CEMP-no stars, five CEMP-s stars, two CEMP-r stars, and two CEMP-r/s stars. One of the CEMP-rr stars and one of the CEMP-r/s stars are possible NEMP stars. We detect lithium for three of the six CEMP-no stars, all of which are Li-depleted with respect to the Spite plateau. The majority of the CEMP stars have [C/N] > 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < -3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a "floor" in the absolute Ba abundances of CEMP-no stars at A(Ba)~ -2.0.Comment: 20 pages, 16 figures, Accepted for publication in Ap
    corecore