1,789 research outputs found

    Kinetic Anomalies in Addition-Aggregation Processes

    Full text link
    We investigate irreversible aggregation in which monomer-monomer, monomer-cluster, and cluster-cluster reactions occur with constant but distinct rates K_{MM}, K_{MC}, and K_{CC}, respectively. The dynamics crucially depends on the ratio gamma=K_{CC}/K_{MC} and secondarily on epsilon=K_{MM}/K_{MC}. For epsilon=0 and gamma<2, there is conventional scaling in the long-time limit, with a single mass scale that grows linearly in time. For gamma >= 2, there is unusual behavior in which the concentration of clusters of mass k, c_k decays as a stretched exponential in time within a boundary layer k<k* propto t^{1-2/gamma} (k* propto ln t for gamma=2), while c_k propto t^{-2} in the bulk region k>k*. When epsilon>0, analogous behaviors emerge for gamma<2 and gamma >= 2.Comment: 6 pages, 2 column revtex4 format, for submission to J. Phys.

    The nucleation behavior of supercooled water vapor in helium

    Get PDF
    The nucleation behavior of supersaturated water vapor in helium is experimentally investigated in the temperature range of 200–240 K. The experiments are performed using a pulse expansion wave tube. The experimental results show a sharp transition in the nucleation rates at 207 K. We suggest that the transition is due to the transition of vapor/liquid to vapor/solid nucleation (ordered with decreasing temperature). A qualitative theoretical explanation is given based on the classical nucleation theory and the surface energy of ice

    Nontrivial Polydispersity Exponents in Aggregation Models

    Full text link
    We consider the scaling solutions of Smoluchowski's equation of irreversible aggregation, for a non gelling collision kernel. The scaling mass distribution f(s) diverges as s^{-tau} when s->0. tau is non trivial and could, until now, only be computed by numerical simulations. We develop here new general methods to obtain exact bounds and good approximations of Ï„\tau. For the specific kernel KdD(x,y)=(x^{1/D}+y^{1/D})^d, describing a mean-field model of particles moving in d dimensions and aggregating with conservation of ``mass'' s=R^D (R is the particle radius), perturbative and nonperturbative expansions are derived. For a general kernel, we find exact inequalities for tau and develop a variational approximation which is used to carry out the first systematic study of tau(d,D) for KdD. The agreement is excellent both with the expansions we derived and with existing numerical values. Finally, we discuss a possible application to 2d decaying turbulence.Comment: 16 pages (multicol.sty), 6 eps figures (uses epsfig), Minor corrections. Notations improved, as published in Phys. Rev. E 55, 546

    Symmetry breaking in the Hubbard model at weak coupling

    Full text link
    The phase diagram of the Hubbard model is studied at weak coupling in two and three spatial dimensions. It is shown that the Neel temperature and the order parameter in d=3 are smaller than the Hartree-Fock predictions by a factor of q=0.2599. For d=2 we show that the self-consistent (sc) perturbation series bears no relevance to the behavior of the exact solution of the Hubbard model in the symmetry-broken phase. We also investigate an anisotropic model and show that the coupling between planes is essential for the validity of mean-field-type order parameters

    Dynamical Cluster Approximation Employing FLEX as a Cluster Solver

    Full text link
    We employ the Dynamical Cluster Approximation (DCA) in conjunction with the Fluctuation Exchange Approximation (FLEX) to study the Hubbard model. The DCA is a technique to systematically restore the momentum conservation at the internal vertices of Feynman diagrams relinquished in the Dynamical Mean Field Approximation (DMFA). FLEX is a perturbative diagrammatic approach in which classes of Feynman diagrams are summed over analytically using geometric series. The FLEX is used as a tool to investigate the complementarity of the DCA and the finite size lattice technique with periodic boundary conditions by comparing their results for the Hubbard model. We also study the microscopic theory underlying the DCA in terms of compact (skeletal) and non-compact diagrammatic contributions to the thermodynamic potential independent of a specific model. The significant advantages of the DCA implementation in momentum space suggests the development of the same formalism for the frequency space. However, we show that such a formalism for the Matsubara frequencies at finite temperatures leads to acausal results and is not viable. However, a real frequency approach is shown to be feasible.Comment: 15 pages, 24 figures. Submitted to Physical Review B as a Regular Articl

    Charge-order transition in the extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the charge-order transition at zero temperature in a two-leg Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. We consider electron densities between quarter and half filling. For quarter filling and U=8t, we find evidence for a continuous phase transition between a homogeneous state at small V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge order at large V. This transition to a checkerboard charge-ordered state remains present at all larger fillings, but becomes discontinuous at sufficiently large filling. We discuss the influence of U/t on the transition and estimate the position of the tricritical points.Comment: 4 pages, 5 figs, minor changes, accepted for publication in PRB R

    Removal of biofilms by impinging water droplets

    Get PDF
    The process of impinging water droplets on Streptococcus mutans biofilms was studied experimentally and numerically. Droplets were experimentally produced by natural breakup of a cylindrical liquid jet. Droplet diameter and velocity were varied between 20 and 200¿µm and between 20 and 100 m/s, respectively. The resulting erosion process of the biofilm was determined experimentally with high-speed recording techniques and a quantitative relationship between the removal rate, droplet size, and velocity was determined. The shear stress and the pressure on the surface during droplet impact were determined by numerical simulations, and a qualitative agreement between the experiment and the simulation was obtained. Furthermore, it was shown that the stresses on the surface are strongly reduced when a water film is present

    Toward a systematic 1/d expansion: Two particle properties

    Full text link
    We present a procedure to calculate 1/d corrections to the two-particle properties around the infinite dimensional dynamical mean field limit. Our method is based on a modified version of the scheme of Ref. onlinecite{SchillerIngersent}}. To test our method we study the Hubbard model at half filling within the fluctuation exchange approximation (FLEX), a selfconsistent generalization of iterative perturbation theory. Apart from the inherent unstabilities of FLEX, our method is stable and results in causal solutions. We find that 1/d corrections to the local approximation are relatively small in the Hubbard model.Comment: 4 pages, 4 eps figures, REVTe
    • …
    corecore