2,300 research outputs found

    Mass Transfer Mechanism in Real Crystals by Pulsed Laser Irradiation

    Full text link
    The dynamic processes in the surface layers of metals subjected activity of a pulsing laser irradiation, which destroyed not the crystalline structure in details surveyed. The procedure of calculation of a dislocation density generated in bulk of metal during the relaxation processes and at repeated pulse laser action is presented. The results of evaluations coincide with high accuracy with transmission electron microscopy dates. The dislocation-interstitial mechanism of laser-stimulated mass-transfer in real crystals is presented on the basis of the ideas of the interaction of structure defects in dynamically deforming medium. The good compliance of theoretical and experimental results approves a defining role of the presented mechanism of mass transfer at pulse laser action on metals. The possible implementation this dislocation-interstitial mechanism of mass transfer in metals to other cases of pulsing influences is justifiedComment: 10 pages, 2 figures, Late

    Thermal Fluctuations of the Electric Field in the Presence of Carrier Drift

    Full text link
    We consider a semiconductor in a non-equilibrium steady state, with a dc current. On top of the stationary carrier motion there are fluctuations. It is shown that the stationary motion of the carriers (i.e., their drift) can have a profound effect on the electromagnetic field fluctuations in the bulk of the sample as well as outside it, close to the surface (evanescent waves in the near field). The effect is particularly pronounced near the plasma frequency. This is because drift leads to a significant modification of the dispersion relation for the bulk and surface plasmons.Comment: Comments are welcom

    Analytic model for a frictional shallow-water undular bore

    Get PDF
    We use the integrable Kaup-Boussinesq shallow water system, modified by a small viscous term, to model the formation of an undular bore with a steady profile. The description is made in terms of the corresponding integrable Whitham system, also appropriately modified by friction. This is derived in Riemann variables using a modified finite-gap integration technique for the AKNS scheme. The Whitham system is then reduced to a simple first-order differential equation which is integrated numerically to obtain an asymptotic profile of the undular bore, with the local oscillatory structure described by the periodic solution of the unperturbed Kaup-Boussinesq system. This solution of the Whitham equations is shown to be consistent with certain jump conditions following directly from conservation laws for the original system. A comparison is made with the recently studied dissipationless case for the same system, where the undular bore is unsteady.Comment: 24 page

    Whitham systems and deformations

    Full text link
    We consider the deformations of Whitham systems including the "dispersion terms" and having the form of Dubrovin-Zhang deformations of Frobenius manifolds. The procedure is connected with B.A. Dubrovin problem of deformations of Frobenius manifolds corresponding to the Whitham systems of integrable hierarchies. Under some non-degeneracy requirements we suggest a general scheme of the deformation of the hyperbolic Whitham systems using the initial non-linear system. The general form of the deformed Whitham system coincides with the form of the "low-dispersion" asymptotic expansions used by B.A. Dubrovin and Y. Zhang in the theory of deformations of Frobenius manifolds.Comment: 27 pages, Late

    Radiation Front Sweeping the Ambient Medium of Gamma-Ray Bursts

    Get PDF
    Gamma-ray bursts (GRBs) are emitted by relativistic ejecta from powerful cosmic explosions. Their light curves suggest that the gamma-ray emission occurs at early stages of the ejecta expansion, well before it decelerates in the ambient medium. If so, the launched gamma-ray front must overtake the ejecta and sweep the ambient medium outward. As a result a gap is opened between the ejecta and the medium that surfs the radiation front ahead. Effectively, the ejecta moves in a cavity until it reaches a radius R_{gap}=10^{16}E_{54}^{1/2} cm where E is the isotropic energy of the GRB. At R=R_{gap} the gap is closed, a blast wave forms and collects the medium swept by radiation. Further development of the blast wave is strongly affected by the leading radiation front: the front plays the role of a precursor where the medium is loaded with e+- pairs and preaccelerated just ahead of the blast. It impacts the emission from the blast at R < R_{load}=5R_{gap} (the early afterglow). A spectacular observational effect results: GRB afterglows should start in optical/UV and evolve fast (< min) to a normal X-ray afterglow. The early optical emission observed in GRB 990123 may be explained in this way. The impact of the front is especially strong if the ambient medium is a wind from a massive progenitor of the GRB. In this case three phenomena are predicted: (1) The ejecta decelerates at R<R_{load} producing a lot of soft radiation. (2) The light curve of soft emission peaks at t_{peak}=40(1+z)E_{54}^{1/2}(Gamma_{ej}/100)^{-2} s where Gamma_{ej} is the Lorentz factor of the ejecta. Given measured redshift z and t_{peak}, one finds Gamma_{ej}. (3) The GRB acquires a spectral break at 5 - 50 MeV because harder photons are absorbed by radiation scattered in the wind.Comment: 20 pages, accepted to Ap

    Thermal drag revisited: Boltzmann versus Kubo

    Full text link
    The effect of mutual drag between phonons and spin excitations on the thermal conductivity of a quantum spin system is discussed. We derive general expression for the drag component of the thermal current using both Boltzmann equation approach and Kubo linear-response formalism to leading order in the spin-phonon coupling. We demonstrate that aside from higher-order corrections which appear in the Kubo formalism both approaches yield identical results for the drag thermal conductivity. We discuss the range of applicability of our result and provide a generalization of our consideration to the cases of fermionic excitations and to anomalous forms of boson-phonon coupling. Several asymptotic regimes of our findings relevant to realistic situations are highlighted.Comment: 14 pages, 3 figures, published version, extended discussio

    Flux flow of Abrikosov-Josephson vortices along grain boundaries in high-temperature superconductors

    Full text link
    We show that low-angle grain boundaries (GB) in high-temperature superconductors exhibit intermediate Abrikosov vortices with Josephson cores, whose length ll along GB is smaller that the London penetration depth, but larger than the coherence length. We found an exact solution for a periodic vortex structure moving along GB in a magnetic field HH and calculated the flux flow resistivity RF(H)R_F(H), and the nonlinear voltage-current characteristics. The predicted RF(H)R_F(H) dependence describes well our experimental data on 77^{\circ} unirradiated and irradiated YBa2Cu3O7YBa_2Cu_3O_7 bicrystals, from which the core size l(T)l(T), and the intrinsic depairing density Jb(T)J_b(T) on nanoscales of few GB dislocations were measured for the first time. The observed temperature dependence of Jb(T)=Jb0(1T/Tc)2J_b(T)=J_{b0}(1-T/T_c)^2 indicates a significant order parameter suppression in current channels between GB dislocation cores.Comment: 5 pages 5 figures. Phys. Rev. Lett. (accepted

    Descriptive Complexity of Deterministic Polylogarithmic Time and Space

    Full text link
    We propose logical characterizations of problems solvable in deterministic polylogarithmic time (PolylogTime) and polylogarithmic space (PolylogSpace). We introduce a novel two-sorted logic that separates the elements of the input domain from the bit positions needed to address these elements. We prove that the inflationary and partial fixed point vartiants of this logic capture PolylogTime and PolylogSpace, respectively. In the course of proving that our logic indeed captures PolylogTime on finite ordered structures, we introduce a variant of random-access Turing machines that can access the relations and functions of a structure directly. We investigate whether an explicit predicate for the ordering of the domain is needed in our PolylogTime logic. Finally, we present the open problem of finding an exact characterization of order-invariant queries in PolylogTime.Comment: Submitted to the Journal of Computer and System Science

    Theory of shot noise in space-charge limited diffusive conduction regime

    Full text link
    As is well known, the fluctuations from a stable stationary nonequilibrium state are described by a linearized nonhomogeneous Boltzmann-Langevin equation. The stationary state itself may be described by a nonlinear Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there is actually a unique way to obtain a linear equation for the fluctuations. In the present paper we treat as an example an analytical theory of nonequilibrium shot noise in a diffusive conductor under the space charge limited regime. Our approach is compared with that of Schomerus, Mishchenko and Beenakker [Phys. Rev. B 60, 5839 (1999)]. We find some difference between the present theory and the approach of their paper and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the theory of fluctuation phenomena in a nonequilibrium electron gas.Comment: 17 pages, no figure

    Cavity solitons in vertical-cavity surface-emitting lasers

    Full text link
    We investigate a control of the motion of localized structures of light by means of delay feedback in the transverse section of a broad area nonlinear optical system. The delayed feedback is found to induce a spontaneous motion of a solitary localized structure that is stationary and stable in the absence of feedback. We focus our analysis on an experimentally relevant system namely the Vertical-Cavity Surface-Emitting Laser (VCSEL). In the absence of the delay feedback we present experimental evidence of stationary localized structures in a 80 μ\mum aperture VCSEL. The spontaneous formation of localized structures takes place above the lasing threshold and under optical injection. Then, we consider the effect of the time-delayed optical feedback and investigate analytically the role of the phase of the feedback and the carrier lifetime on the self-mobility properties of the localized structures. We show that these two parameters affect strongly the space time dynamics of two-dimensional localized structures. We derive an analytical formula for the threshold associated with drift instability of localized structures and a normal form equation describing the slow time evolution of the speed of the moving structure.Comment: 7 pages, 5 figure
    corecore