8,416 research outputs found
AMTRAN development program Interim report
AMTRAN software system developed for IBM 1130 compute
Deployable truss structure advanced technology
The 5-meter technology antenna program demonstrated the overall feasibility of integrating a mesh reflector surface with a deployable truss structure to achieve a precision surface contour compatible with future, high-performance antenna requirements. Specifically, the program demonstrated: the feasibility of fabricating a precision, edge-mounted, deployable, tetrahedral truss structure; the feasibility of adjusting a truss-supported mesh reflector contour to a surface error less than 10 mils rms; and good RF test performance, which correlated well with analytical predictions. Further analysis and testing (including flight testing) programs are needed to fully verify all the technology issues, including structural dynamics, thermodynamics, control, and on-orbit RF performance, which are associated with large, deployable, truss antenna structures
Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster Polytope Volume Computation
We give the first rigorous proof of the convergence of Riemannian Hamiltonian
Monte Carlo, a general (and practical) method for sampling Gibbs distributions.
Our analysis shows that the rate of convergence is bounded in terms of natural
smoothness parameters of an associated Riemannian manifold. We then apply the
method with the manifold defined by the log barrier function to the problems of
(1) uniformly sampling a polytope and (2) computing its volume, the latter by
extending Gaussian cooling to the manifold setting. In both cases, the total
number of steps needed is O^{*}(mn^{\frac{2}{3}}), improving the state of the
art. A key ingredient of our analysis is a proof of an analog of the KLS
conjecture for Gibbs distributions over manifolds
Spatial Mixing of Coloring Random Graphs
We study the strong spatial mixing (decay of correlation) property of proper
-colorings of random graph with a fixed . The strong spatial
mixing of coloring and related models have been extensively studied on graphs
with bounded maximum degree. However, for typical classes of graphs with
bounded average degree, such as , an easy counterexample shows that
colorings do not exhibit strong spatial mixing with high probability.
Nevertheless, we show that for with and
sufficiently large , with high probability proper -colorings of
random graph exhibit strong spatial mixing with respect to an
arbitrarily fixed vertex. This is the first strong spatial mixing result for
colorings of graphs with unbounded maximum degree. Our analysis of strong
spatial mixing establishes a block-wise correlation decay instead of the
standard point-wise decay, which may be of interest by itself, especially for
graphs with unbounded degree
Ablation debris control by means of closed thick film filtered water immersion
The performance of laser ablation generated debris control by means of open immersion techniques have been shown to be limited by flow surface ripple effects on the beam and the action of ablation plume pressure loss by splashing of the immersion fluid. To eradicate these issues a closed technique has been developed which ensured a controlled geometry for both the optical interfaces of the flowing liquid film. This had the action of preventing splashing, ensuring repeatable machining conditions and allowed for control of liquid flow velocity. To investigate the performance benefits of this closed immersion technique bisphenol A polycarbonate samples have been machined using filtered water at a number of flow velocities. The results demonstrate the efficacy of the closed immersion technique: a 93% decrease in debris is produced when machining under closed filtered water immersion; the average debris particle size becomes larger, with an equal proportion of small and medium sized debris being produced when laser machining under closed flowing filtered water immersion; large debris is shown to be displaced further by a given flow velocity than smaller debris, showing that the action of flow turbulence in the duct has more impact on smaller debris. Low flow velocities were found to be less effective at controlling the positional trend of deposition of laser ablation generated debris than high flow velocities; but, use of excessive flow velocities resulted in turbulence motivated deposition. This work is of interest to the laser micromachining community and may aide in the manufacture of 2.5D laser etched patterns covering large area wafers and could be applied to a range of wavelengths and laser types
AMTRAN system design and software description
Automatic Mathematical Translation language software for IBM 113
Technical management techniques for identification and control of industrial safety and pollution hazards
Constructive recommendations are suggested for pollution problems from offshore energy resources industries on outer continental shelf. Technical management techniques for pollution identification and control offer possible applications to space engineering and management
Analysis of Absorbing Times of Quantum Walks
Quantum walks are expected to provide useful algorithmic tools for quantum
computation. This paper introduces absorbing probability and time of quantum
walks and gives both numerical simulation results and theoretical analyses on
Hadamard walks on the line and symmetric walks on the hypercube from the
viewpoint of absorbing probability and time.Comment: LaTeX2e, 14 pages, 6 figures, 1 table, figures revised, references
added, to appear in Physical Review
The statistical mechanics of combinatorial optimization problems with site disorder
We study the statistical mechanics of a class of problems whose phase space
is the set of permutations of an ensemble of quenched random positions.
Specific examples analyzed are the finite temperature traveling salesman
problem on several different domains and various problems in one dimension such
as the so called descent problem. We first motivate our method by analyzing
these problems using the annealed approximation, then the limit of a large
number of points we develop a formalism to carry out the quenched calculation.
This formalism does not require the replica method and its predictions are
found to agree with Monte Carlo simulations. In addition our method reproduces
an exact mathematical result for the Maximum traveling salesman problem in two
dimensions and suggests its generalization to higher dimensions. The general
approach may provide an alternative method to study certain systems with
quenched disorder.Comment: 21 pages RevTex, 8 figure
- …