21,269 research outputs found

    Hydrodynamic crystals: collective dynamics of regular arrays of spherical particles in a parallel-wall channel

    Full text link
    Simulations of over 10310^3 hydrodynamically coupled solid spheres are performed to investigate collective motion of linear trains and regular square arrays of particles suspended in a fluid bounded by two parallel walls. Our novel accelerated Stokesian-dynamics algorithm relies on simplifications associated with the Hele--Shaw asymptotic far-field form of the flow scattered by the particles. The simulations reveal propagation of particle-displacement waves, deformation and rearrangements of a particle lattice, propagation of dislocation defects in ordered arrays, and long-lasting coexistence of ordered and disordered regions.Comment: 4 pages 6 figure

    A 3D radiative transfer framework: VII. Arbitrary velocity fields in the Eulerian frame

    Full text link
    A solution of the radiative-transfer problem in 3D with arbitrary velocity fields in the Eulerian frame is presented. The method is implemented in our 3D radiative transfer framework and used in the PHOENIX/3D code. It is tested by comparison to our well- tested 1D co-moving frame radiative transfer code, where the treatment of a monotonic velocity field is implemented in the Lagrangian frame. The Eulerian formulation does not need much additional memory and is useable on state-of-the-art computers, even large-scale applications with 1000's of wavelength points are feasible

    High-overtone Bulk-Acoustic Resonator gravimetric sensitivity: towards wideband acoustic spectroscopy

    Full text link
    In the context of direct detection sensors with compact dimensions, we investigate the gravimetric sensitivity of High-overtone Bulk Acoustic Resonators, through modeling of their acoustic characteristics and experiment. The high frequency characterizing such devices is expected to induce a significant effect when the acoustic field boundary conditions are modified by a thin adlayer. Furthermore, the multimode spectral characteristics is considered for wideband acoustic spectroscopy of the adlayer, once the gravimetric sensitivity dependence of the various overtones is established. Finally, means of improving the gravimetric sensitivity by confining the acoustic field in a low acoustic-impedance layer is theoretically established.Comment: 9 pages, 10 figures in J. Appl. Phys. 201

    Isospin and density dependences of nuclear matter symmetry energy coefficients II

    Full text link
    Symmetry energy coefficients of explicitly isospin asymmetric nuclear matter at variable densities (from .5ρ0\rho_0 up to 2 ρ0\rho_0) are studied as generalized screening functions. An extended stability condition for asymmetric nuclear matter is proposed. We find the possibility of obtaining stable asymmetric nuclear matter even in some cases for which the symmetric nuclear matter limit is unstable. Skyrme-type forces are extensively used in analytical expressions of the symmetry energy coefficients derived as generalized screening functions in the four channels of the particle hole interaction producing alternative behaviors at different ρ\rho and bb (respectively the density and the asymmetry coefficient). The spin and spin-isospin coefficients, with corrections to the usual Landau Migdal parameters, indicate the possibility of occurring instabilities with common features depending on the nuclear density and n-p asymmetry. Possible relevance for high energy heavy ions collisions and astrophysical objects is discussed.Comment: 16 pages (latex) plus twelve figures in four eps files, to be published in I.J.M.P.

    Detailed Spectral Modeling of a 3-D Pulsating Reverse Detonation Model: Too Much Nickel

    Full text link
    We calculate detailed NLTE synthetic spectra of a Pulsating Reverse Detonation (PRD) model, a novel explosion mechanism for Type Ia supernovae. While the hydro models are calculated in 3-D, the spectra use an angle averaged hydro model and thus some of the 3-D details are lost, but the overall average should be a good representation of the average observed spectra. We study the model at 3 epochs: maximum light, seven days prior to maximum light, and 5 days after maximum light. At maximum the defining Si II feature is prominent, but there is also a prominent C II feature, not usually observed in normal SNe Ia near maximum. We compare to the early spectrum of SN 2006D which did show a prominent C II feature, but the fit to the observations is not compelling. Finally we compare to the post-maximum UV+optical spectrum of SN 1992A. With the broad spectral coverage it is clear that the iron-peak elements on the outside of the model push too much flux to the red and thus the particular PRD realizations studied would be intrinsically far redder than observed SNe Ia. We briefly discuss variations that could improve future PRD models.Comment: 15 pages, 4 figures, submitted to Ap

    A Physical Model for SN 2001ay, a normal, bright, extremely slowly declining Type Ia supernova

    Get PDF
    We present a study of the peculiar Type Ia supernova 2001ay (SN 2001ay). The defining features of its peculiarity are: high velocity, broad lines, and a fast rising light curve, combined with the slowest known rate of decline. It is one magnitude dimmer than would be predicted from its observed value of Delta-m15, and shows broad spectral features. We base our analysis on detailed calculations for the explosion, light curves, and spectra. We demonstrate that consistency is key for both validating the models and probing the underlying physics. We show that this SN can be understood within the physics underlying the Delta-m15 relation, and in the framework of pulsating delayed detonation models originating from a Chandrasekhar mass, white dwarf, but with a progenitor core composed of 80% carbon. We suggest a possible scenario for stellar evolution which leads to such a progenitor. We show that the unusual light curve decline can be understood with the same physics as has been used to understand the Delta-m15 relation for normal SNe Ia. The decline relation can be explained by a combination of the temperature dependence of the opacity and excess or deficit of the peak luminosity, alpha, measured relative to the instantaneous rate of radiative decay energy generation. What differentiates SN 2001ay from normal SNe Ia is a higher explosion energy which leads to a shift of the Ni56 distribution towards higher velocity and alpha < 1. This result is responsible for the fast rise and slow decline. We define a class of SN 2001ay-like SNe Ia, which will show an anti-Phillips relation.Comment: 35 pages, 14 figures, ApJ, in pres

    Analytic Inversion of Emission Lines of Arbitrary Optical Depth for the Structure of Supernova Ejecta

    Get PDF
    We derive a method for inverting emission line profiles formed in supernova ejecta. The derivation assumes spherical symmetry and homologous expansion (i.e., v(r)∝rv(r) \propto r), is analytic, and even takes account of occultation by a pseudo-photosphere. Previous inversion methods have been developed which are restricted to optically thin lines, but the particular case of homologous expansion permits an analytic result for lines of {\it arbitrary} optical depth. In fact, we show that the quantity that is generically retrieved is the run of line intensity IλI_\lambda with radius in the ejecta. This result is quite general, and so could be applied to resonance lines, recombination lines, etc. As a specific example, we show how to derive the run of (Sobolev) optical depth τλ\tau_\lambda with radius in the case of a pure resonance scattering emission line.Comment: 6 pages, no figures, to appear in Astrophysical Journal Letters, requires aaspp4.sty to late

    3D Radiative Transfer with PHOENIX

    Full text link
    Using the methods of general relativity Lindquist derived the radiative transfer equation that is correct to all orders in v/c. Mihalas developed a method of solution for the important case of monotonic velocity fields with spherically symmetry. We have developed the generalized atmosphere code PHOENIX, which in 1-D has used the framework of Mihalas to solve the radiative transfer equation (RTE) in 1-D moving flows. We describe our recent work including 3-D radiation transfer in PHOENIX and particularly including moving flows exactly using a novel affine method. We briefly discuss quantitative spectroscopy in supernovae.Comment: 13 pages, 9 figures, to appear in Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation Hydrodynamics, Ed. I. Hubeny, American Institute of Physics (2009
    • 

    corecore