228 research outputs found

    Coping Strategies of Part-Time MBA Students: The Role of Boundary Management

    Get PDF
    Using the framework of boundary theory as applied to the work-life-school construct, the study focused on part-time MBA students who worked full-time, their tendency to segment or integrate their numerous roles, and the coping tactics they utilized in redistributing their efforts as they added graduate school to these roles. The research population consisted of a convenience sample of all first and second year Managerial MBA students enrolled at the University of Arkansas. A quasi-experimental research design was used to analyze the sample. The results of the research indicated that the part-time graduate student who was employed full time faced specific work-home-school challenges that forced revision in work-life balance overall. The addition of a part-time MBA program to the life of a full-time employee created a tremendous amount of stress as boundaries were renegotiated. The addition of school as a third domain to the work-life construct appeared to force students toward an integration of boundaries in an attempt to complete added responsibilities. A high percentage of students were classified as integrators based on responses related to the segmentation-integration continuum. Students tending toward segmentation on the continuum were more likely to actively set expectations regarding their boundaries and confront violators of those boundaries than were integrators. Responses to the open response question suggested that, despite the high proportion of integrators in the study, students often voiced a preference for segmentation and experienced stress based on the forced integration caused by ongoing demands at work, home and school

    Non-Steroidal Anti-Inflammatory Drugs: Pharmacokinetics and Clinical Response in Rheumatoid Arthritis

    Get PDF
    Comparative studies of non-steroidal anti-inflammatory drugs (NSAIDs) in rheumatoid arthritis indicate that patient response is variable and unpredictable. Although variability in pharmacokinetics might be implicated, no study has been able to demonstrate this. Changes in patient response to increments in dose or concentration have been difficult to detect, possibly due to the variable nature of the disease, to individual differences in disease severity and to the subjective nature of the rheumatological measurements. In this thesis the response to increments in dose or concentration of two NSAIDs, fenclofenac and naproxen, were investigated in patients with rheumatoid arthritis. In both cases three doses were given to all patients in a randomised double-blind design. Attention was focused on the determination of pharmacokinetic variability and the utility of plasma concentrations in the explanation of clinical response. In addition, the disposition of indomethacin in plasma and synovial fluid was studied. Analytical techniques were developed for the accurate measurement of plasma concentrations by high performance liquid chromatography and for the determination of the concentration of these drugs not bound to plasma proteins using equilibrium dialysis. The variability in the pharmacokinetics of the NSAIDs was assessed by performing single dose studies. There was considerable variability in the clearance of both fenclofenac and naproxen. The clearance of fenclofenac appeared to be reduced in patients with raised alkaline phosphatase and with increasing age. The clearance of naproxen was also reduced in the elderly and appeared to be lower in female patients

    Construction and Measurements of an Improved Vacuum-Swing-Adsorption Radon-Mitigation System

    Full text link
    In order to reduce backgrounds from radon-daughter plate-out onto detector surfaces, an ultra-low-radon cleanroom is being commissioned at the South Dakota School of Mines and Technology. An improved vacuum-swing-adsorption radon mitigation system and cleanroom build upon a previous design implemented at Syracuse University that achieved radon levels of ∼\sim0.2 \,Bq \,m−3^{-3}. This improved system will employ a better pump and larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit and aged water for humidification. With the rebuilt (original) radon mitigation system, the new low-radon cleanroom has already achieved a >> \,300×\times reduction from an input activity of 58.6±0.758.6\pm0.7 \,Bq \,m−3^{-3} to a cleanroom activity of 0.13±0.060.13\pm0.06 \,Bq \,m−3^{-3}.Comment: 5 pages, 4 figures, Proceedings of Low Radioactivity Techniques (LRT) 2015, Seattle, WA, March 18-20, 201

    Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    Get PDF
    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge for the AITT-4STAR project has been conducting it simultaneously with preparations for, and execution of, ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment), a NASA airborne science deployment (unplanned when AITT-4STAR was selected for funding) in which 4STAR will deploy to Thule, Greenland, and Fairbanks, Alaska, on the NASA C- 130. This presentation describes progress to date in accomplishing AITT-4STAR goals, and plans for project completion

    FUSE: Lightweight Guaranteed Distributed Failure Notification

    Get PDF
    FUSE is a lightweight failure notification service for building distributed systems. Distributed systems built with FUSE are guaranteed that failure notifications never fail. Whenever a failure notification is triggered, all live members of the FUSE group will hear a notification within a bounded period of time, irrespective of node or communication failures. In contrast to previous work on failure detection, the responsibility for deciding that afailure has occurred is shared between the FUSE service and the distributed application. This allows applications to implement their own definitions of failure. Our experience building a scalable distributed event delivery system on an overlay network has convinced us of the usefulness of this service. Our results demonstrate that the network costs of each FUSE group can be small; in particular, our overlay network implementation requires no additional liveness-verifying ping traffic beyond that already needed to maintain the overlay, making the steady state network load independent of the number of active FUSE groups

    Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Get PDF
    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical Instruments, Inc.), an in-water system with microradiometers matching C-AIR, was deployed to compare sea-truth measurements and low-altitude Twin Otter flights within Monterey Bay red tide events. This novel airborne and in-water sensor capability advances the science of coastal measurements and enables rapid response for coastal events

    Optimal Consensus set for nD Fixed Width Annulus Fitting

    No full text
    International audienceThis paper presents a method for fitting a nD fixed width spherical shell to a given set of nD points in an image in the presence of noise by maximizing the number of inliers, namely the consensus set. We present an algorithm, that provides the optimal solution(s) within a time complexity O(N n+1 log N) for dimension n, N being the number of points. Our algorithm guarantees optimal solution(s) and has lower complexity than previous known methods

    Rescaled coordinate descent methods for linear programming

    Get PDF
    We propose two simple polynomial-time algorithms to find a positive solution to Ax=0Ax=0 . Both algorithms iterate between coordinate descent steps similar to von Neumann’s algorithm, and rescaling steps. In both cases, either the updating step leads to a substantial decrease in the norm, or we can infer that the condition measure is small and rescale in order to improve the geometry. We also show how the algorithms can be extended to find a solution of maximum support for the system Ax=0Ax=0 , x≥0x≥0 . This is an extended abstract. The missing proofs will be provided in the full version
    • …
    corecore