28 research outputs found

    COVID-19 therapy: from myths to reality and hopes

    Get PDF
    The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, is unprecedented for the 21st century and has already affected countries with a total population of billions of people. The number of infected has already surpassed 30 million people and the number of deaths has exceeded 1 million. Unfor-tunately, Russia is still one of the five countries with the largest number of infected people, although mortality from COVID-19 is significantly lower than in many other countries. Since the virus and the pathogenesis caused by it have a lot of new and unexpected features, high-tech and specific anti-viral drugs and vaccines have not yet been created. The most promising targets for future drug development are enzymes necessary for the life cycle of this particular virus (such as components of the replicase complex or viral proteases). Unexpected circumstances are pushing the evaluation of a number of previously developed and existing drugs directed toward other RNA viruses, some of which have already been shown effective in clinical trials against SARS-CoV-2. There is no doubt that soon prototypes of drugs of this class with higher specificity and effective-ness will be found. Another group of potential drugs are known drugs that are directed against various aspects of the pathogenesis caused by SARS-CoV-2, in particular, cytokine storm or coagulopathy. It should be emphasized that the genome of the virus encodes about 10 additional proteins, some of which may be related to unusual aspects of pathogenesis during COVID-19. Basic research should determine which of these proteins can be targets for specific therapy. Finally, the fact that neutralizing antibodies are found in the blood plasma of many patients and can be used for the prevention and treatment of COVID-19, indicates the potential of using recombinant neutralizing antibodies as drugs, and secondly, confirms the possibility of creating effective vaccines. This mini-review discusses therapeutic approaches and the status of clinical trials using drugs that already existed before the pandemic and were originally developed against other infectious agents or for the treatment of autoimmune pathologies. These drugs are part of today's arsenal in therapeutic protocols and are used in an attempt to cope with the COVID-19 epidemic in different countries

    Itaconate-mediated inhibition of succinate dehydrogenase regulates cytokine production in LPS-induced inflammation

    Get PDF
    Itaconate is an immunoregulatory metabolite produced by myeloid cells and plays a key role in the regulation of the immune response. Itaconate, on the one hand, is able to suppress the activity of succinate dehydrogenase (SDH), thereby making a significant contribution to the metabolic reprogramming of the cell. On the other hand, itaconate can regulate the activity of a number of transcription factors and transcription regulators, thereby affecting gene expression. In most experimental studies, itaconate has been characterized predominantly as an anti-inflammatory agent. In particular, itaconate produced by activated macrophages inhibits the production of cytokines TNF, IL-1b, IL-6, IL-10. However, some evidence suggests a pro- inflammatory role for itaconate in a number of mouse disease models. Thus, the deletion of the Acod1 gene responsible for the production of itaconate leads to the suppression of the production of TNF and IL-6 in the mouse polymicrobial sepsis model, which means that in the context of inflammation in vivo, itaconate can act as an inducer of pro-inflammatory cytokines. The mechanism of itaconate regulation of cytokine production in systemic inflammation remains unexplored. In this work, we have shown that injection of itaconate and its derivative dimethyl itaconate into mice, followed by induction of inflammation by bacterial lipopolysaccharide (LPS), leads to changes in the content of cytokines in the blood. Interestingly, the systemic production of IL-6 and IL-10 in response to itaconate is increased, contrary to the results previously obtained in cell cultures. At the same time, IFNg production, on the contrary, is suppressed. Apparently, itaconate regulates the production of cytokines in vivo by suppressing the activity of SDH. Injection of the SDH inhibitor, dimethylmalonate, followed by induction of inflammation in mice, results in similar changes in blood cytokines observed in response to itaconate: increased production of IL-6, IL-10 and suppression of IFNg production. On the contrary, the addition of succinate, a SDH substrate, leads to the opposite effect on cytokine production. Thus, it can be assumed that the observed effects of itaconate on cytokine production in the model of LPS-induced inflammation are mediated by its ability to inhibit SDH. These results help to understand the controversial role of itaconate in inflammation and shed light on a previously undescribed relationship between SDH and cytokine production in inflammation in vivo

    Immunometabolic changes in macrophages in response to house dust mite extract

    Get PDF
    To date, much remains unclear about the pathogenesis of asthma, one of the most common chronic and highly heterogenic diseases of the respiratory system. The lack of specific and highly effective therapy in case of certain asthma subtypes requires the search for new approaches to treatment. One possible approach would be to influence the metabolism and immune functions of myeloid cells. This approach finds its application in the treatment of cancer and other diseases in the pathogenesis of which macrophages play an important role. It was shown that the pathogenesis of allergic asthma in response to one of the most common allergens, house dust mite, is due to a metabolic TNF-mediated reprogramming of alveolar macrophages. This suggests that influencing the process of TNF production or metabolic adaptations with specific blockers may also lead to a reduction in the symptoms of the course of the disease as a whole. In this work, we experimentally tested whether the previously obtained phenotype that occurs in macrophages in response to HDM cultured in DMEM is preserved if cells are cultured under more physiologically relevant conditions: in a medium closely related in composition to blood plasma. We also analyzed open databases of alveolar macrophages sequencing obtained from patients with asthma or from the lungs of mice in an HDM-induced asthma model in order to correlate specific immunometabolic changes. It was found that macrophages cultured under conditions close to physiological, simultaneously increase the rates of respiration and glycolysis, and also produce TNF in response to HDM. The observed phenotype is consistent with transcriptomic analyzes performed on human and mouse samples, which revealed an increase in the expression of genes related to glycolysis, oxidative phosphorylation, and the TNF signaling pathway. Thus, the data confirm the relevance of the phenotype obtained in vitro to the changes occurring in the in vivo system. However, functional verification at the level of metabolites, proteins and changes in metabolic activity is also required. In addition, it remains to be established how the blocking of individual metabolic pathways affects the features of the functional macrophage phenotype that occurs in response to HDM, and whether this effect can alleviate asthma symptoms

    Novel Biodegradable Polymeric Microparticles Facilitate Scarless Wound Healing by Promoting Re-epithelialization and Inhibiting Fibrosis

    Get PDF
    Despite decades of research, the goal of achieving scarless wound healing remains elusive. One of the approaches, treatment with polymeric microcarriers, was shown to promote tissue regeneration in various in vitro models of wound healing. The in vivo effects of such an approach are attributed to transferred cells with polymeric microparticles functioning merely as inert scaffolds. We aimed to establish a bioactive biopolymer carrier that would promote would healing and inhibit scar formation in the murine model of deep skin wounds. Here we characterize two candidate types of microparticles based on fibroin/gelatin or spidroin and show that both types increase re-epithelialization rate and inhibit scar formation during skin wound healing. Interestingly, the effects of these microparticles on inflammatory gene expression and cytokine production by macrophages, fibroblasts, and keratinocytes are distinct. Both types of microparticles, as well as their soluble derivatives, fibroin and spidroin, significantly reduced the expression of profibrotic factors Fgf2 and Ctgf in mouse embryonic fibroblasts. However, only fibroin/gelatin microparticles induced transient inflammatory gene expression and cytokine production leading to an influx of inflammatory Ly6C+ myeloid cells to the injection site. The ability of microparticle carriers of equal proregenerative potential to induce inflammatory response may allow their subsequent adaptation to treatment of wounds with different bioburden and fibrotic content

    Macrophages from naked mole-rat possess distinct immunometabolic signatures upon polarization

    Get PDF
    The naked mole-rat (NMR) is a unique long-lived rodent which is highly resistant to age-associated disorders and cancer. The immune system of NMR possesses a distinct cellular composition with the prevalence of myeloid cells. Thus, the detailed phenotypical and functional assessment of NMR myeloid cell compartment may uncover novel mechanisms of immunoregulation and healthy aging. In this study gene expression signatures, reactive nitrogen species and cytokine production, as well as metabolic activity of classically (M1) and alternatively (M2) activated NMR bone marrow-derived macrophages (BMDM) were examined. Polarization of NMR macrophages under pro-inflammatory conditions led to expected M1 phenotype characterized by increased pro-inflammatory gene expression, cytokine production and aerobic glycolysis, but paralleled by reduced production of nitric oxide (NO). Under systemic LPS-induced inflammatory conditions NO production also was not detected in NMR blood monocytes. Altogether, our results indicate that NMR macrophages are capable of transcriptional and metabolic reprogramming under polarizing stimuli, however, NMR M1 possesses species-specific signatures as compared to murine M1, implicating distinct adaptations in NMR immune system

    Π¦ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹, обратная Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠ° ΠΈ антицитокиновая тСрапия

    Get PDF
    Cytokines comprise the molecular language of communication between the cells, which is needed to maintain the homeostatic functions of the body (including the immune system) and mediate various diseases. Many aspects of inflammation, autoimmune diseases and neoplasia are associated with cytokine signaling through specific receptors. The establishment of new physiological functions of β€œold” cytokines and understanding the molecular and cellular mechanisms of their involvement in disease pathogenesis, as well as the search for new therapeutic targets and development of innovative approaches to anti-cytokine therapy, present a fundamental problem. When assessing the tremendous success of anti-cytokine therapy in treatment of certain autoimmune diseases, we should not forget that (a) this treatment does not eliminate the causes of the disease:autoreactive T-cell clones; and that (b) less than half of the patients respond to this therapy; and that (c) anti-cytokine therapy has serious side effects.Π¦ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹ – молСкулярный язык ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ ΠΊΠ°ΠΊ для поддСрТания гомСостаза ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° (Π² Ρ‚ΠΎΠΌ числС ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы), Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… заболСваниях. МногиС аспСкты воспалСния, Π°ΡƒΡ‚ΠΎΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΈ Π½Π΅ΠΎΠΏΠ»Π°Π·ΠΈΠΉ связаны с дСйствиСм Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² Ρ‡Π΅Ρ€Π΅Π· спСцифичСскиС Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹. Π€ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΡƒΡŽ Π½Π°ΡƒΡ‡Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ установлСниС Π½ΠΎΠ²Ρ‹Ρ… физиологичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ «старых» Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ², ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ молСкулярных ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² заболСваниях, поиск Π½ΠΎΠ²Ρ‹Ρ… тСрапСвтичСских мишСнСй ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ Π°Π½Ρ‚ΠΈΡ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. ΠŸΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ Π³Ρ€Π°Π½Π΄ΠΈΠΎΠ·Π½ΠΎΠ³ΠΎ успСха Π°Π½Ρ‚ΠΈΡ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π°ΡƒΡ‚ΠΎΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ нСльзя Π·Π°Π±Ρ‹Π²Π°Ρ‚ΡŒ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ, Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, это Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ устраняСт ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ заболСвания – Π°ΡƒΡ‚ΠΎΡ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π’-ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠ»ΠΎΠ½ΠΎΠ², Π²ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, Π½Π° Π½Π΅Π΅ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ ΠΌΠ΅Π½Π΅Π΅ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ‹ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΈ, Π²-Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΡ…, Ρƒ Π½Π΅Π΅ Π΅ΡΡ‚ΡŒ ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹Π΅ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹Π΅ эффСкты

    CANCER IMMUNOTHERAPY BASED ON THE BLOCKADE OF IMMUNE CHECKPOINTS

    No full text
    Immune checkpoints represent the system of inhibitory mechanisms regulating the activation of the immune response, preventing the autoimmune processes and modulating the immune response by decreasing the immune cell-mediated damage of tissues and organs. Tumor cells may utilize these checkpoints to prevent the activation of tumor-specific lymphocytes, thereby acquiring resistance against the immune response. The blockade of inhibitory signal that is transduced in immune checkpoints leading to the reactivation of antitumor immune response is a promising method of tumor immunotherapy. Since the majority of immune checkpoints are based on the ligand-receptor interactions, one of contemporary modalities of anti-tumor therapy is based on the development of ligandor receptor-blocking therapeutic monoclonal antibodies, as well as soluble recombinant receptors capable of competing for a ligand and thereby modulating the signal transduction. In the past few years, this field of tumor immunotherapy experienced an impressive success; however, the potential tradeoff for altering of the natural suppressive mechanisms is the development of the autoimmune reactions

    ROLE OF IL-6 IN EXPERIMENTAL ARTHRITIS CAUSED BY TRANSFER OF ARTHRITOGENIC ANTIBODIES

    No full text
    Interleukin-6 (IL-6) exerts important functions on immune regulation. In case of high expression, IL-6 may promote autoimmune disorders, e.g., arthritis. Systemic IL-6 blockers based on monoclonal antibodies against IL-6, or its specific receptor subunit, are already used in clinical settings, adding to a range of known biological drugs, such as, TNF blockers. Rheumatic disorders and their experimental therapy are reproducible in mice. This study revealed systemically increased levels of IL-6 in developing arthritis caused by transfer of pathogenic antibodies, as well as the effects of IL-6 neutralization by monoclonal antibodies against murine IL-6. Our results suggest a pathogenic role of the two cytokines, TNF and IL-6, in experimental arthritis induced by passive transfer of anti-collagen antibodies

    Distinct role of surface lymphotoxin expressed by B cells in the organization of secondary lymphoid tissues.

    No full text
    In order to definitively ascertain the functional contribution of lymphotoxin (LT) expressed by B cells, we produced mice with the LTbeta gene deleted from B cells (B-LTbeta KO mice). In contrast to systemic LTbeta deletion, in B-LTbeta KO mice only splenic microarchitecture was affected, while lymph nodes and Peyer\u27s patches (PP) were normal, except for PP\u27s reduced size. Even though B-LTbeta KO spleens retained a small number of follicular dendritic cells (FDC) which appeared to be dependent on LTbeta produced by T cells, IgG responses to sheep red blood cells were markedly reduced. Thus, the organogenic function of B-LTbeta is almost entirely restricted to spleen, where it supports the correct lymphoid architecture that is critical for an effective humoral immune response

    Fibroblasts upregulate expression of adhesion molecules and promote lymphocyte retention in 3D fibroin/gelatin scaffolds

    No full text
    Bioengineered scaffolds are crucial components in artificial tissue construction. In general, these scaffolds provide inert three-dimensional (3D) surfaces supporting cell growth. However, some scaffolds can affect the phenotype of cultured cells, especially, adherent stromal cells, such as fibroblasts. Here we report on unique properties of 3D fibroin/gelatin materials, which may rapidly induce expression of adhesion molecules, such as ICAM-1 and VCAM-1, in cultured primary murine embryonic fibroblasts (MEFs). In contrast, two-dimensional (2D) fibroin/gelatin films did not show significant effects on gene expression profiles in fibroblasts as compared to 3D culture conditions. Interestingly, TNF expression was induced in MEFs cultured in 3D fibroin/gelatin scaffolds, while genetic or pharmacological TNF ablation resulted in diminished ICAM-1 and VCAM-1 expression by these cells. Using selective MAPK inhibitors, we uncovered critical contribution of JNK to 3D-induced upregulation of these adhesion molecules. Moreover, we observed ICAM-1/VCAM-1-dependent adhesion of lymphocytes to fibroblasts cultured in 3D fibroin/gelatin scaffolds, but not on 2D fibroin/gelatin films, suggesting functional reprogramming in stromal cells, when exposed to 3D environment. Finally, we observed significant infiltration of lymphocytes into 3D fibroin/gelatin, but not into collagen scaffolds in vivo upon subcapsular kidney implantation in mice. Together our data highlight the important features of fibroin/gelatin scaffolds, when they are produced as 3D sponges rather than 2D films, which should be considered when using these materials for tissue engineering
    corecore