128 research outputs found

    Non-Destructive Identification of Cold and Extremely Localized Single Molecular Ions

    Full text link
    A simple and non-destructive method for identification of a single molecular ion sympathetically cooled by a single laser cooled atomic ion in a linear Paul trap is demonstrated. The technique is based on a precise determination of the molecular ion mass through a measurement of the eigenfrequency of a common motional mode of the two ions. The demonstrated mass resolution is sufficiently high that a particular molecular ion species can be distinguished from other equally charged atomic or molecular ions having the same total number of nucleons

    Non-invasive vibrational mode spectroscopy of ion Coulomb crystals through resonant collective coupling to an optical cavity field

    Full text link
    We report on a novel non-invasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them.Comment: 4 pages, 4 figure

    Doppler cooling of calcium ions using a dipole-forbidden transition

    Full text link
    Doppler cooling of calcium ions has been experimentally demonstrated using the S1/2 to D5/2 dipole-forbidden transition. Scattering forces and fluorescence levels a factor of 5 smaller than for usual Doppler cooling on the dipole allowed S1/2 to P1/2 transition have been achieved. Since the light scattered from the ions can be monitored at (violet) wavelengths that are very different from the excitation wavelengths, single ions can be detected with an essentially zero background level. This, as well as other features of the cooling scheme, can be extremely valuable for ion trap based quantum information processing.Comment: 4 pages, 4 figures, minor changes to commentary and reference

    Two-step Doppler cooling of a three-level ladder system with an intermediate metastable level

    Full text link
    Doppler laser cooling of a three-level ladder system using two near-resonant laser fields is analyzed in the case of the intermediate level being metastable while the upper level is short-lived. Analytical as well as numerical results for e.g. obtainable scattering rates and achievable temperatures are presented. When appropriate, comparisons with two-level single photon Doppler laser cooling is made. These results are relevant to recent experimental Doppler laser cooling investigations addressing intercombination lines in alkali-earth metal atoms and quadrupole transitions in alkali-earth metal ions.Comment: accepted by Phys Rev

    Modes of Oscillation in Radiofrequency Paul Traps

    Full text link
    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general three-dimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We derive analytically the micromotion amplitude of the ions, rigorously proving well-known experimental observations. We use a method of infinite determinants to find the modes which diagonalize the linearized time-dependent dynamical problem. This allows obtaining explicitly the ('Floquet-Lyapunov') transformation to coordinates of decoupled linear oscillators. We demonstrate the utility of the method by analyzing the modes of a small `peculiar' crystal in a linear Paul trap. The calculations can be readily generalized to multispecies ion crystals in general multipole traps, and time-dependent quantum wavefunctions of ion oscillations in such traps can be obtained.Comment: 24 pages, 3 figures, v2 adds citations and small correction
    • …
    corecore