6,267 research outputs found

    Analytical Hartree-Fock gradients for periodic systems

    Get PDF
    We present the theory of analytical Hartree-Fock gradients for periodic systems as implemented in the code CRYSTAL. We demonstrate how derivatives of the integrals can be computed with the McMurchie-Davidson algorithm. Highly accurate gradients with respect to nuclear coordinates are obtained for systems periodic in 0,1,2 or 3 dimensions.Comment: accepted by International Journal of Quantum Chemistr

    Ionospheric refraction effects on TOPEX orbit determination accuracy using the Tracking and Data Relay Satellite System (TDRSS)

    Get PDF
    This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions, however, appears likely to reduce this figure substantially. Plans and recommendations for response to these findings are presented

    Low-energy electron beam focusing in self-organized porous alumina vacuum windows

    Get PDF
    Micromachined, micron-thick porous alumina membranes with closed pore endings show high electron transparency above an energy of 5 keV. This is due to the channeling of electrons along the negatively charged insulating pores after surmounting the thin entrance layer. We also find a sharp hightransparency energy window at energies as low as 2 keV which may be the result of a local maximum of channeling, as predicted by simulations, and positive charge up of the entrance layer causing electron electrostatic focusing. Applications for these membranes range from atmospheric electron spectroscopy to self-assembled, nanoscale, large-area electron collimators

    Proteomics of Cytochrome c Oxidase-Negative versus -Positive Muscle Fiber Sections in Mitochondrial Myopathy

    Get PDF
    The mosaic distribution of cytochrome c oxidase(+) (COX+) and COX - muscle fibers in mitochondrial disorders allows the sampling of fibers with compensated and decompensated mitochondrial function from the same individual. We apply laser capture microdissection to excise individual COX+ and COX- fibers from the biopsies of mitochondrial myopathy patients. Using mass spectrometry-based proteomics, we quantify >4,000 proteins per patient. While COX+ fibers show a higher expression of respiratory chain components, COX- fibers display protean adaptive responses, including upregulation of mitochondrial ribosomes, translation proteins, and chaperones. Upregulated proteins include C1QBP, required for mitoribosome formation and protein synthesis, and STOML2, which organizes cardiolipin-enriched microdomains and the assembly of respiratory supercomplexes. Factoring in fast/slow fiber type, COX (-) slow fibers show a compensatory upregulation of beta-oxidation, the AAA(+) protease AFG3L1, and the OPA1-dependent cristae remodeling program. These findings reveal compensatory mechanisms in muscle fibers struggling with energy shortage and metabolic stress

    Density functional study of the adsorption of K on the Ag(111) surface

    Full text link
    Full-potential gradient corrected density functional calculations of the adsorption of potassium on the Ag(111) surface have been performed. The considered structures are Ag(111) (root 3 x root 3) R30degree-K and Ag(111) (2 x 2)-K. For the lower coverage, fcc, hcp and bridge site; and for the higher coverage all considered sites are practically degenerate. Substrate rumpling is most important for the top adsorption site. The bond length is found to be nearly identical for the two coverages, in agreement with recent experiments. Results from Mulliken populations, bond lengths, core level shifts and work functions consistently indicate a small charge transfer from the potassium atom to the substrate, which is slightly larger for the lower coverage.Comment: to appear in Phys Rev

    Lissajous curves and semiclassical theory: The two-dimensional harmonic oscillator

    Get PDF
    The semiclassical treatment of the two-dimensional harmonic oscillator provides an instructive example of the relation between classical motion and the quantum mechanical energy spectrum. We extend previous work on the anisotropic oscillator with incommensurate frequencies and the isotropic oscillator to the case with commensurate frequencies for which the Lissajous curves appear as classical periodic orbits. Because of the three different scenarios depending on the ratio of its frequencies, the two-dimensional harmonic oscillator offers a unique way to explicitly analyze the role of symmetries in classical and quantum mechanics.Comment: 9 pages, 3 figures; to appear in Am. J. Phy

    Trajectory computation during a maneuver: Thrust estimation with the Goddard Trajectory Determination System (GTDS)

    Get PDF
    Existing thrust modeling capabilities of the Goddard Trajectory Determination System (GTDS) have been enhanced to allow calibration of the onboard propulsion system. These enhancements provide one or more thrust scale factors, based on estimation using the batch least-squares technique, for the case of along-track thrust and the case of attitude-dependent thrust. The enhancements are evaluated using simulated tracking measurements for a test spacecraft and using actual tracking measurements for the Earth Radiation Budget Satellite (ERBS). The effects of tracking measurement noise and distribution on the accuracy of the estimation are investigated and found to be significant. Results and conclusions of the analysis are presented

    Ground-state properties of rutile: electron-correlation effects

    Full text link
    Electron-correlation effects on cohesive energy, lattice constant and bulk compressibility of rutile are calculated using an ab-initio scheme. A competition between the two groups of partially covalent Ti-O bonds is the reason that the correlation energy does not change linearly with deviations from the equilibrium geometry, but is dominated by quadratic terms instead. As a consequence, the Hartree-Fock lattice constants are close to the experimental ones, while the compressibility is strongly renormalized by electronic correlations.Comment: 1 figure to appear in Phys. Rev.

    Preliminary Orbit Determination System (PODS) for Tracking and Data Relay Satellite System (TDRSS)-tracked target Spacecraft using the homotopy continuation method

    Get PDF
    The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered
    corecore