574 research outputs found
Spin-mechanics with levitating ferromagnetic particles
We propose and demonstrate first steps towards schemes where the librational
mode of levitating ferromagnets is strongly coupled to the electronic spin of
Nitrogen-Vacancy (NV) centers in diamond. Experimentally, we levitate
ferromagnets in a Paul trap and employ magnetic fields to attain oscillation
frequencies in the hundreds of kHz range with Q factors close to . These
librational frequencies largely exceed the decoherence rate of NV centers in
typical CVD grown diamonds offering prospects for sideband resolved operation.
We also prepare and levitate composite diamond-ferromagnet particles and
demonstrate both coherent spin control of the NV centers and read-out of the
particle libration using the NV spin. Our results will find applications in
ultra-sensitive gyroscopy and bring levitating objects a step closer to
spin-mechanical experiments at the quantum level.Comment: Lengthened to 11 pages. To appear in PR
Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry
We present a versatile, high-brightness, guided-wave source of polarization
entangled photons, emitted at a telecom wavelength. Photon-pairs are generated
using an integrated type-0 nonlinear waveguide, and subsequently prepared in a
polarization entangled state via a stabilized fiber interferometer. We show
that the single photon emission wavelength can be tuned over more than 50 nm,
whereas the single photon spectral bandwidth can be chosen at will over more
than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing
entanglement analysis, we demonstrate a high degree of control of the quantum
state via the violation of the Bell inequalities by more than 40 standard
deviations. This makes this scheme suitable for a wide range of quantum optics
experiments, ranging from fundamental research to quantum information
applications. We report on details of the setup, as well as on the
characterization of all included components, previously outlined in F. Kaiser
et al. (2013 Laser Phys. Lett. 10, 045202).Comment: 16 pages, 7 figure
Cyclic Diaryl λ3-Bromanes as a Precursor for Regiodivergent Alkynylation Reactions
Regiodivergent reactions are a fascinating tool to rapidly access molecular diversity while using identical coupling partners. We have developed a new approach for regiodivergent synthesis using the dual character of hypervalent bromines. In addition to the recently reported reactivity of hypervalent bromines as aryne precursors, the first transition metal-catalyzed reaction is reported. Accordingly, the development of these two complementary transformations allows for the alteration of regioselectivity to furnish both ortho- and meta-substituted alkynylation products. Mechanistic and computational studies show how these selectivities are controlled
Model Driven Engineering and Dependability Analyses: The Topcased Approach
International audienceModel Driven Engineering approaches are widely promoted to overcome difficulties to design, validate and maintain large complex systems. They present interesting dependability characteristics especially in terms of prevention of design faults and validation of design correctness. However industrial needs, practices and applicable standards impose constraints on the dependability activities to perform and justify. Therefore it is necessary to analyze how a complete dependability and safety process can be integrated with model-driven approaches within a seamless global process: which dependability activities are naturally covered or facilitated by model-driven approaches, and which additional activities are needed with which support. This paper presents the results of a study aiming at the establishment of requirements to model-driven engineering methods and tools, to support dependability analyses
Spin dynamics of a solid-state qubit in proximity to a superconductor
A broad effort is underway to understand and harness the interaction between
superconductors and spin-active color centers with an eye on the realization of
hybrid quantum devices and novel imaging modalities of superconducting
materials. Most work, however, overlooks the complex interplay between either
system and the environment created by the color center host. Here we use an
all-diamond scanning probe to investigate the spin dynamics of a single
nitrogen-vacancy (NV) center proximal to a high-critical-temperature
superconducting film in the presence of a weak magnetic field. We find that the
presence of the superconductor increases the NV spin coherence lifetime, a
phenomenon we tentatively rationalize as a change in the electric noise due to
a superconductor-induced redistribution of charge carriers near the NV site. We
build on these findings to demonstrate transverse-relaxation-time-weighted
imaging of the superconductor film. These results shed light on the complex
surface dynamics governing the spin coherence of shallow NVs while
simultaneously paving the route to new forms of noise spectroscopy and imaging
of superconductors
Iron-catalyzed stereoselective C–H alkylation for simultaneous construction of C–N axial and C -central chirality
The assembly of chiral molecules with multiple stereogenic elements is challenging, and, despite of indisputable advances, largely limited to toxic, cost-intensive and precious metal catalysts. In sharp contrast, we herein disclose a versatile C–H alkylation using a non-toxic, low-cost iron catalyst for the synthesis of substituted indoles with two chiral elements. The key for achieving excellent diastereo- and enantioselectivity was substitution on a chiral N-heterocyclic carbene ligand providing steric hindrance and extra represented by noncovalent interaction for the concomitant generation of C–N axial chirality and C-stereogenic center. Experimental and computational mechanistic studies have unraveled the origin of the catalytic efficacy and stereoselectivity
Safety, tolerability, and potential clinical activity of a glucocorticoid-induced TNF receptor-related protein agonist alone or in combination with nivolumab for patients with advanced solid tumors: a phase 1/2a dose-escalation and cohort-expansion clinical trial
Importance: Multiple immunostimulatory agonist antibodies have been clinically tested in solid tumors to evaluate the role of targeting glucocorticoid-induced tumor necrosis factor (TNF) receptor-related protein in anticancer treatments.
Objective: To evaluate the safety and activity of the fully human glucocorticoid-induced TNF receptor-related protein agonist IgG1 monoclonal antibody BMS-986156 with or without nivolumab in patients with advanced solid tumors.
Design, Setting, and Participants: This global, open-label, phase 1/2a study of BMS-986156 with or without nivolumab enrolled 292 patients 18 years or older with advanced solid tumors and an Eastern Cooperative Oncology Group performance status of 1 or less. Prior checkpoint inhibitor therapy was allowed. Monotherapy and combination dose-escalation cohorts ran concurrently to guide expansion doses beginning October 16, 2015; the study is ongoing.
Interventions: The protein agonist BMS-986156 was administered intravenously at a dose of 10, 30, 100, 240, or 800 mg every 2 weeks as monotherapy, and in the combination group 30, 100, 240, or 800 mg plus 240 mg of nivolumab every 2 weeks; same-dose cohorts were pooled for analysis. One cohort also received 480 mg of BMS-986156 plus 480 mg of nivolumab every 4 weeks.
Main Outcomes and Measures: The primary end points were safety, tolerability, and dose-limiting toxic effects. Additional end points included antitumor activity per Response Evaluation Criteria in Solid Tumors, version 1.1, and exploratory biomarker analyses.
Results: With a follow-up range of 1.4 to 101.7 weeks (follow-up ongoing), 34 patients (16 women and 18 men; median age, 56.6 years [range, 28-75 years]) received monotherapy (4 patients completed initial treatment), and 258 patients (140 women and 118 men; median age, 60 years [range, 21-87 years]) received combination therapy (65 patients completed initial treatment). No grade 3 to 5 treatment-related adverse events occurred with BMS-986156 monotherapy; grade 3 to 4 treatment-related adverse events occurred in 24 patients (9.3%) receiving BMS-986156 plus nivolumab, with no grade 5 treatment-related adverse events. One dose-limiting toxic effect (grade 4 elevated creatine phosphokinase levels) occurred in a patient receiving 800 mg of BMS-986156 plus 240 mg of nivolumab every 2 weeks; BMS-986156 with or without nivolumab exhibited linear pharmacokinetics with dose-related increase after a single dose. Peripheral T-cell and natural killer-cell proliferation increased after administration of BMS-986156 with or without nivolumab. No consistent and significant modulation of intratumoral CD8+ T cells and FoxP3+ regulatory T cells was observed. No responses were seen with BMS-986156 alone; objective response rates ranged from 0% to 11.1% (1 of 9) across combination therapy cohorts, with a few responses observed in patients previously treated with anti-programmed death receptor (ligand) 1 therapy.
Conclusions and Relevance: Based on this cohort, BMS-986156 appears to have had a manageable safety profile, and BMS-986156 plus nivolumab demonstrated safety and efficacy comparable to historical data reported for nivolumab monotherapy.
Trial Registration: ClinicalTrials.gov identifier: NCT02598960
Isotopic Investigation of Contemporary and Historic Changes in Penguin Trophic Niches and Carrying Capacity of the Southern Indian Ocean
A temperature-defined regime shift occurred in the 1970s in the southern Indian Ocean, with simultaneous severe decreases in many predator populations. We tested a possible biological link between the regime shift and predator declines by measuring historic and contemporary feather isotopic signatures of seven penguin species with contrasted foraging strategies and inhabiting a large latitudinal range. We first showed that contemporary penguin isotopic variations and chlorophyll a concentration were positively correlated, suggesting the usefulness of predator δ13C values to track temporal changes in the ecosystem carrying capacity and its associated coupling to consumers. Having controlled for the Suess effect and for increase CO2 in seawater, δ13C values of Antarctic penguins and of king penguins did not change over time, while δ13C of other subantarctic and subtropical species were lower in the 1970s. The data therefore suggest a decrease in ecosystem carrying capacity of the southern Indian Ocean during the temperature regime-shift in subtropical and subantarctic waters but not in the vicinity of the Polar Front and in southward high-Antarctic waters. The resulting lower secondary productivity could be the main driving force explaining the decline of subtropical and subantarctic (but not Antarctic) penguins that occurred in the 1970s. Feather δ15N values did not show a consistent temporal trend among species, suggesting no major change in penguins’ diet. This study highlights the usefulness of developing long-term tissue sampling and data bases on isotopic signature of key marine organisms to track potential changes in their isotopic niches and in the carrying capacity of the environment
- …