90 research outputs found

    Transdermal Reverse Iontophoresis of Valproate: A Noninvasive Method for Therapeutic Drug Monitoring

    Get PDF
    Purpose. The objectives of this work were (a) to explore the potential of transdermal reverse iontophoresis for therapeutic drug monitoring and (b) to develop an "internal standard” calibration procedure so as to render the technique completely noninvasive. Methods. A series of in vitro iontophoresis experiments was performed in which the subdermal concentration of sodium valproate was varied from 21 μM to 1 mM. Glutamic acid was also introduced into the subdermal donor at a fixed concentration to act as an "internal standard” for the calibration method. Results. Both valproate and glutamate anions were recovered, as expected, at the anodal receptor chamber. The iontophoretic extraction flux of valproate was linearly correlated with the subdermal concentration. Glutamate flux was constant. It follows that the ratio of extracted fluxes (valproate/glutamate) was directly dependent upon (a) the subdermal valproate concentration and (b) the subdermal concentration ratio (valproate/glutamate), offering a means, thereby, to a completely noninvasive methodology. Conclusions. This work demonstrates the potential of reverse iontophoresis for noninvasive therapeutic monitoring. The simultaneous quantification of the analyte of interest and of an "internal standard” renders the withdrawal of a blood sample unnecessar

    Reverse Iontophoresis as a Noninvasive Tool for Lithium Monitoring and Pharmacokinetic Profiling

    Get PDF
    Purpose. Transdermal iontophoresis was investigated as a noninvasive tool for drug monitoring and pharmacokinetic profiling. Lithium, a frequently monitored drug, was used as a model. The objectives were a) to demonstrate the linear dependence of the iontophoretic extraction flux of lithium on the subdermal concentration of the drug, b) to evaluate the capacity of iontophoresis to monitor sudden changes in the subdermal level, c) to investigate the utility of reverse iontophoresis as a tool in pharmacokinetic studies, and d) to examine the validity of an internal standard calibration procedure to render the method completely noninvasive. Methods. Transdermal, iontophoretic extraction was performed in vitro using dermatomed pig-ear skin. The subdermal solution consisted of a physiological buffer containing lithium chloride at concentrations in the therapeutic range and two putative internal standards, sodium and potassium, at fixed physiological levels. The subdermal concentration of lithium was changed either in a stepwise fashion or by simulating one of two pharmacokinetic profiles. Results. Lithium was extracted via electromigration to the cathode. A excellent correlation between subdermal lithium concentration and iontophoretic extraction flux was observed. Iontophoresis tracked sudden concentration changes and followed kinetic profiles. In addition, the effective elimination rate constant could be directly, and noninvasively, estimated from the extraction flux data. Conclusions. Reverse iontophoresis is a potentially useful and noninvasive tool for lithium monitorin

    Effective use of transdermal drug delivery in children

    Get PDF

    Mathematical modelling of adjuvant-enhanced active ingredient leaf uptake of pesticides

    Get PDF
    The global importance of effective and affordable pesticides to optimise crop yield and to support health of our growing population cannot be understated. But to develop new products or refine existing ones in response to climate and environmental changes is both time-intensive and expensive which is why the agrochemical industry is increasingly interested in using mechanistic models as part of their formulation development toolbox. In this work, we develop such a model to describe uptake of pesticide spray droplets across the leaf surface. We simplify the leaf structure by identifying the outer cuticle as the main barrier to uptake; the result is a novel, hybrid model in which two well-mixed compartments are separated by a membrane in which we describe the spatio-temporal distribution of the pesticide. This leads to a boundary value partial differential equation problem coupled to a pair of ordinary differential equation systems which we solve numerically. We also simplify the pesticide formulation into two key components: the Active Ingredient which produces the desired effect of the pesticide and an Adjuvant which is present in the formulation to facilitate effective absorption of the Active Ingredient into the leaf. This approach gives rise to concentration-dependent diffusion. We take an intuitive approach to parameter estimation using a small experimental data set and subsequently demonstrate the importance of the concentration-dependent diffusion in replicating the data. Finally, we demonstrate the need for further work to identify how the physicochemical properties of pesticides affect flow into and across the leaf surface

    A mechanistic approach to modelling the formation of a drug reservoir in the skin

    Get PDF
    It has been shown that prolonged systemic presence of a drug can cause a build-up of that drug in the skin. This drug ‘reservoir’, if properly understood, could provide useful information about recent drug-taking history of the patient. We create a pair of coupled mathematical models which combine to explore the potential for a drug reservoir to establish based on the kinetic properties of the drug. The first compartmental model is used to characterise time-dependent drug concentrations in plasma and tissue following a customisable drug regimen. Outputs from this model provide boundary conditions for the second, spatio-temporal model of drug build-up in the skin. We focus on drugs that are highly bound as this will restrict their potential to move freely into the skin but which are lipophilic so that, in the unbound form, they would demonstrate an affinity to the outer layers of the skin. Buprenorphine, a drug used to treat opiate addiction, is one example of a drug satisfying these properties. In the discussion we highlight how our study might be used to inform future experimental design and data collection to provide relevant parameter estimates for reservoir formation and its potential to contribute to enhanced drug monitoring techniques.</p

    Influence of Chemical Enhancers and Iontophoresis on the In Vitro Transdermal Permeation of Propranolol: Evaluation by Dermatopharmacokinetics

    Full text link
    [EN] The aims of this study were to assess, in vitro, the possibility of administering propranolol transdermally and to evaluate the usefulness of the dermatopharmacokinetic (DPK) method in assessing the transport of drugs through stratum corneum, using propranolol as a model compound. Four chemical enhancers (decenoic and oleic acid, laurocapram, and R-(+)-limonene) and iontophoresis at two current densities, 0.25 and 0.5 mA/cm(2) were tested. R-(+)-limonene, and iontophoresis at 0.5 mA/cm(2) were proven to be the most efficient in increasing propranolol transdermal flux, both doubled the original propranolol transdermal flux. Iontophoresis was demonstrated to be superior than the chemical enhancer because it allowed faster delivery of the drug. The DPK method was sufficiently sensitive to detect subtle vehicle-induced effects on the skin permeation of propranolol. The shorter duration of these experiments and their ability to provide mechanistic information about partition between vehicle and skin and diffusivity through skin place them as practical and potentially insightful approach to quantify and, ultimately, optimize topical bioavailability.This research was funded by Ministerio de Ciencia e Innovación (AP2007-03456) and the Universidad CEU Cardenal Herrera.Calatayud-Pascual, M.; Sebastian-Morelló, M.; Balaguer-Fernandez, C.; Delgado-Charro, M.; Lopez-Castellano, A.; Merino Sanjuán, V. (2018). Influence of Chemical Enhancers and Iontophoresis on the In Vitro Transdermal Permeation of Propranolol: Evaluation by Dermatopharmacokinetics. Pharmaceutics. 10(4):1-15. https://doi.org/10.3390/pharmaceutics10040265S11510

    Skin Pharmacokinetics of Transdermal Scopolamine:Measurements and Modeling

    Get PDF
    Prediction of skin absorption and local bioavailability from topical formulations remains a difficult task. An important challenge in forecasting topical bioavailability is the limited information available about local and systemic drug concentrations post application of topical drug products. Commercially available transdermal patches, such as Scopoderm (Novartis Consumer Health UK), offer an opportunity to test these experimental approaches as systemic pharmacokinetic data are available with which to validate a predictive model. The long-term research aim, therefore, is to develop a physiologically based pharmacokinetic model (PBPK) to predict the dermal absorption and disposition of actives included in complex dermatological products. This work explored whetherin vitrorelease and skin permeation tests (IVRT and IVPT, respectively), andin vitroandin vivostratum corneum (SC) and viable tissue (VT) sampling data, can provide a satisfactory description of drug “input rate” into the skin and subsequently into the systemic circulation.In vitrorelease and skin permeation results for scopolamine were consistent with the previously reported performance of the commercial patch investigated. New skin sampling data on the dermatopharmacokinetics (DPK) of scopolamine also accurately reflected the rapid delivery of a “priming” dose from the patch adhesive, superimposed on a slower, rate-controlled input from the drug reservoir. The scopolamine concentration versus time profiles in SC and VT skin compartments,in vitroandin vivo, taken together with IVRT release and IVPT penetration kinetics, reflect the input rate and drug delivery specifications of the Scopoderm transdermal patch and reveal the importance of skin binding with respect to local drug disposition. Further data analysis and skin PK modeling are indicated to further refine and develop the approach outlined.</p
    corecore