156 research outputs found

    17. Issues for Nuclear Power Plants Steam Generators

    Get PDF
    Open Access Boo

    Prediction of two-phase choked-flow through safety valves

    Get PDF
    Different models of two-phase choked flow through safety valves are applied in order to evaluate their capabilities of prediction in different thermal-hydraulic conditions. Experimental data available in the literature for two-phase fluid and subcooled liquid upstream the safety valve have been compared with the models predictions. Both flashing flows and non- flashing flows of liquid and incondensable gases have been considered. The present paper shows that for flashing flows good predictions are obtained by using the two-phase valve discharge coefficient defined by Lenzing and multiplying it by the critical flow rate in an ideal nozzle evaluated by either Omega Method or the Homogeneous Non-equilibrium Direct Integration. In case of non-flashing flows of water and air, Leung/Darby formulation of the two-phase valve discharge coefficient together with the Omega Method is more suitable to the prediction of flow rate

    Radionuclides Transport Phenomena in Vadose Zone

    Get PDF
    Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behaviour in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes

    HORIZONTAL TWO-PHASE FLOW PATTERN RECOGNITION

    Get PDF
    In the present work a Wire Mesh Sensor (WMS) has been adopted to characterize the air-water two-phase flow in a test section consisting of a horizontal Plexiglas pipe of internal diameter 19.5 mm and total length of about 6 m. The flow quality ranges from 0 to 0.73 and the superficial velocity ranges from 0.145 to 31.94 m/s for air and from 0.019 to 2.62 m/s for water. The observed flow patterns are stratified-bubble-slug/plug-annular. The WMS consists of two planes of parallel wire grids (16x16) that are placed across the channel at 1.5 mm and span over the measuring cross section. The wires of both planes cross under an angle of 90°, with a diameter Dwire of 70 μm and a pitch equal to 1.3 mm. The void fraction profiles are derived from the sensor data and their evolution in time and space is analyzed and discussed. The dependence of the signals on the measured fluid dynamic quantities is discussed too. The main task is to predict which flow pattern will exist under any set of operating conditions as well as to predict the value of characteristic flow parameters

    Two-Phase flow instrumentation for nuclear accidents simulation, Keynote lecture KN3, pp. 1-23, Procs. 32nd UIT Heat Transfer Conference, Pisa, June 23-25, 2014.

    Get PDF
    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed

    Thermal hydraulic analysis of Alfred bayonet tube steam generator

    Get PDF
    The paper analyzes the performance of ALFRED steam generator from the thermal-hydraulic point of view highlighting the effect of some design features. The parameters object of the study are the regenerative heat transfer, the dimension of the inner tube and the length of the bayonet. The system code RELAP5-3D/2.4.2 has been chosen for the analysis. Sensitivities analysis allowed the determination of the different design parameters influence, here briefly summarized. The increase of regenerative heat transfer affects the efficiency of the steam generator through a degradation of the outlet steam quality: the number of bayonet tubes required to remove the nominal power increases with the increase of the global heat transfer coefficient of the inner tube. A higher inner diameter results in a larger surface area for the regenerative heat transfer and in a higher heat transfer coefficient in the annular region because of the reduction of the cross section. The result is an improvement of the performances of the steam generator thanks to the dimension reduction of the annular gap. Finally, if the height of the bayonet tube is reduced by 1 meter, the number of bayonet tubes required to remove the nominal power increases up to 20%

    RELAP5 simulation of two-phase flow experiments in vertical helical tubes

    Get PDF
    In the framework of the studies concerning the thermalfluid dynamic phenomena in helicoidal pipes of the innovative nuclear reactor IRIS steam generators, the Department of Nuclear Engineering of the University of Palermo in collaboration with the Politecnico di Torino Department of Energetics has been engaged in a work aimed to adapt, by implementing new suitable models, RELAP5/mod3.2.2β code to simulate the thermalfluid-dynamics and geometries such as the ones involved in helicoidal pipes. In fact this code is based on one-dimensional thermal-hydraulic relationships and presents limitations to model complicated geometry such as helicoidal pipes. Therefore the code was improved with additional correlations that are valid for two-phase flow and allow to overcome the drawbacks. The validation work of the models that were added is based on the experimental data carried out at the Politecnico di Torino Department of Energetics. In this paper it will be shown that the so modified RELAP5 code allows to represent adequately the experimental data

    a new spool piece for horizontal two phase flow measurement

    Get PDF
    This works presents the characterization of a Spool Piece (SP), made up of a Classical Venturi and a Wire Mesh Sensor (WMS), that are installed in a horizontal test section, in which an air-water mixture flows. The test section consists of a horizontal Plexiglas pipe of internal diameter 19.5 mm and total length of about 7 m. The flow quality ranges from 0 to 0.73 and the superficial velocity ranges from 0.14 to 32 m/s for air and from 0.019 to 2.62 m/s for water; the pressure ranges from atmospheric pressure to 4 bar depending on the experimental conditions. The observed flow patterns are stratified-bubbly-slug/plug-annular. The instruments response is analyzed and discussed. From the signal analysis the mass flow rate of each phase is obtained. The developed model allows the evaluation of the mass flow rate with an accuracy higher than 20% in the 84% of the cases and with an accuracy higher than 10% in the 73.3% of the cases. Finally the introduction of the estimated parameters in the SP model is considered and discussed
    • …
    corecore