209 research outputs found

    Magnetic Branes Supported by Nonlinear Electromagnetic Field

    Full text link
    Considering the nonlinear electromagnetic field coupled to Einstein gravity in the presence of cosmological constant, we obtain a new class of dd-dimensional magnetic brane solutions. This class of solutions yields a spacetime with a longitudinal nonlinear magnetic field generated by a static source. These solutions have no curvature singularity and no horizons but have a conic geometry with a deficit angle δϕ\delta \phi. We investigate the effects of nonlinearity on the metric function and deficit angle and also find that for the special range of the nonlinear parameter, the solutions are not asymptotic AdS. We generalize this class of solutions to the case of spinning magnetic solutions, and find that when one or more rotation parameters are nonzero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameters. Then, we use the counterterm method and compute the conserved quantities of these spacetimes. Finally, we obtain a constrain on the nonlinear parameter, such that the nonlinear electromagnetic field is conformally invariant.Comment: 15 pages, one eps figur

    On the electrodynamics of moving bodies at low velocities

    Get PDF
    We discuss the seminal article in which Le Bellac and Levy-Leblond have identified two Galilean limits of electromagnetism, and its modern implications. We use their results to point out some confusion in the literature and in the teaching of special relativity and electromagnetism. For instance, it is not widely recognized that there exist two well defined non-relativistic limits, so that researchers and teachers are likely to utilize an incoherent mixture of both. Recent works have shed a new light on the choice of gauge conditions in classical electromagnetism. We retrieve Le Bellac-Levy-Leblond's results by examining orders of magnitudes, and then with a Lorentz-like manifestly covariant approach to Galilean covariance based on a 5-dimensional Minkowski manifold. We emphasize the Riemann-Lorenz approach based on the vector and scalar potentials as opposed to the Heaviside-Hertz formulation in terms of electromagnetic fields. We discuss various applications and experiments, such as in magnetohydrodynamics and electrohydrodynamics, quantum mechanics, superconductivity, continuous media, etc. Much of the current technology where waves are not taken into account, is actually based on Galilean electromagnetism

    Whole-exome analysis in osteosarcoma to identify a personalized therapy

    Get PDF
    Osteosarcoma is the most common pediatric primary non-hematopoietic bone tumor. Survival of these young patients is related to the response to chemotherapy and development of metastases. Despite many advances in cancer research, chemotherapy regimens for osteosarcoma are still based on non-selective cytotoxic drugs. It is essential to investigate new specific molecular therapies for osteosarcoma to increase the survival rate of these patients. We performed exomic sequence analyses of 8 diagnostic biopsies of patients with conventional high grade osteosarcoma to advance our understanding of their genetic underpinnings and to correlate the genetic alteration with the clinical and pathological features of each patient to identify a personalized therapy. We identified 18,275 somatic variations in 8,247 genes and we found three mutated genes in 7/8 (87%) samples (KIF1B, NEB and KMT2C). KMT2C showed the highest number of variations; it is an important component of a histone H3 lysine 4 methyltransferase complex and it is one of the histone modifiers previously implicated in carcinogenesis, never studied in osteosarcoma. Moreover, we found a group of 15 genes that showed variations only in patients that did not respond to therapy and developed metastasis and some of these genes are involved in carcinogenesis and tumor progression in other tumors. These data could offer the opportunity to get a key molecular target to identify possible new strategies for early diagnosis and new therapeutic approaches for osteosarcoma and to provide a tailored treatment for each patient based on their genetic profile

    Gyroscope precession in cylindrically symmetric spacetimes

    Get PDF
    We present calculations of gyroscope precession in spacetimes described by Levi-Civita and Lewis metrics, under different circumstances. By doing so we are able to establish a link between the parameters of the metrics and observable quantities, providing thereby a physical interpretation for those parameters, without specifying the source of the field.Comment: 13 pages, Latex. To appear in Class.Q.Gra

    Testing gravitational theories using Eccentric Eclipsing Detached Binaries

    Full text link
    In this paper we compare the effects of different theories of gravitation on the apsidal motion of a sample of Eccentric Eclipsing Detached Binary stars. The comparison is performed by using the formalism of the Post-Newtonian parametrization to calculate the theoretical advance at periastron and compare it to the observed one, after having considered the effects of the structure and rotation of the involved stars. A variance analysis on the results of this comparison, shows that no significant difference can be found due to the effect of the different theories under test with respect to the standard General Relativity. It will be possible to observe differences, as we would expect, by checking the observed period variation on a much larger lapse of time. It can also be noticed from our results, that f(R) theory is the nearest to GR with respect to the other tested theories.Comment: 15 pages, 8 figures, 5 tables; Monthly Notices of the Royal Astronomical Society (2012) "Early View". arXiv admin note: text overlap with arXiv:gr-qc/0603071 by other author

    Families of Canonical Transformations by Hamilton-Jacobi-Poincar\'e equation. Application to Rotational and Orbital Motion

    Full text link
    The Hamilton-Jacobi equation in the sense of Poincar\'e, i.e. formulated in the extended phase space and including regularization, is revisited building canonical transformations with the purpose of Hamiltonian reduction. We illustrate our approach dealing with orbital and attitude dynamics. Based on the use of Whittaker and Andoyer symplectic charts, for which all but one coordinates are cyclic in the Hamilton-Jacobi equation, we provide whole families of canonical transformations, among which one recognizes the familiar ones used in orbital and attitude dynamics. In addition, new canonical transformations are demonstrated.Comment: 21 page

    Reduction of bihamiltonian systems and separation of variables: an example from the Boussinesq hierarchy

    Full text link
    We discuss the Boussinesq system with t5t_5 stationary, within a general framework for the analysis of stationary flows of n-Gel'fand-Dickey hierarchies. We show how a careful use of its bihamiltonian structure can be used to provide a set of separation coordinates for the corresponding Hamilton--Jacobi equations.Comment: 20 pages, LaTeX2e, report to NEEDS in Leeds (1998), to be published in Theor. Math. Phy

    Standard and Generalized Newtonian Gravities as ``Gauge'' Theories of the Extended Galilei Group - I: The Standard Theory

    Full text link
    Newton's standard theory of gravitation is reformulated as a {\it gauge} theory of the {\it extended} Galilei Group. The Action principle is obtained by matching the {\it gauge} technique and a suitable limiting procedure from the ADM-De Witt action of general relativity coupled to a relativistic mass-point.Comment: 51 pages , compress, uuencode LaTex fil

    Liquid biopsy biomarkers in urine: A route towards molecular diagnosis and personalized medicine of bladder cancer

    Get PDF
    Bladder cancer (BC) is characterized by high incidence and recurrence rates together with genomic instability and elevated mutation degree. Currently, cystoscopy combined with cytology is routinely used for diagnosis, prognosis and disease surveillance. Such an approach is often associated with several side effects, discomfort for the patient and high economic burden. Thus, there is an essential demand of non-invasive, sensitive, fast and inexpensive biomarkers for clinical management of BC patients. In this context, liquid biopsy represents a very promising tool that has been widely investigated over the last decade. Liquid biopsy will likely be at the basis of patient selection for precision medicine, both in terms of treatment choice and real-time monitoring of therapeutic effects. Several different urinary biomarkers have been proposed for liquid biopsy in BC, including DNA methylation and mutations, protein-based assays, non-coding RNAs and mRNA signatures. In this review, we summarized the state of the art on different available tests concerning their potential clinical applications for BC detection, prognosis, surveillance and response to therapy
    • …
    corecore