We discuss the seminal article in which Le Bellac and Levy-Leblond have
identified two Galilean limits of electromagnetism, and its modern
implications. We use their results to point out some confusion in the
literature and in the teaching of special relativity and electromagnetism. For
instance, it is not widely recognized that there exist two well defined
non-relativistic limits, so that researchers and teachers are likely to utilize
an incoherent mixture of both. Recent works have shed a new light on the choice
of gauge conditions in classical electromagnetism. We retrieve Le
Bellac-Levy-Leblond's results by examining orders of magnitudes, and then with
a Lorentz-like manifestly covariant approach to Galilean covariance based on a
5-dimensional Minkowski manifold. We emphasize the Riemann-Lorenz approach
based on the vector and scalar potentials as opposed to the Heaviside-Hertz
formulation in terms of electromagnetic fields. We discuss various applications
and experiments, such as in magnetohydrodynamics and electrohydrodynamics,
quantum mechanics, superconductivity, continuous media, etc. Much of the
current technology where waves are not taken into account, is actually based on
Galilean electromagnetism